首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclodextrin glucanotransferase production from Bacillus clausii E16, a new bacteria isolated from Brazilian soil samples was optimized in shake-flask cultures. A 2(4) full-factorial central composite design was performed to optimize the culture conditions, using a response surface methodology. The combined effect among the soluble starch concentration, the peptone concentration, the yeast extract concentration, and the initial pH value of the culture medium was investigated. The optimum concentrations of the components, determined by a 2(4) full-factorial central composite design, were 13.4 g/L soluble starch, 4.9 g/L peptone, 5.9 g/L yeast extract, and initial pH 10.1. Under these optimized conditions, the maximum cyclodextrin glucanotransferase activity was 5.9 U/mL after a 48-h fermentation. This yield was 68% higher than that obtained when the microorganism was cultivated in basal culture medium.  相似文献   

2.
In this study Plackett–Burman designs have been used to find the optimum conditions for separation of 15 phenolic compounds by LC. The responses used were the minimum resolution between two peaks and the analysis time. The adopted factors and experimental field were organic modifier (MeOH or ACN), percentage of acetic acid in the aqueous phase, flow rate, gradient with ten steps of percentage increase of the organic component of the mobile phase, and ten factors representing the duration of the steps. Use of Plackett–Burman designs achieved separation of the phenolic compounds within 45 min.  相似文献   

3.
The optimization of nutrient levels for the production of pristinamycins by Streptomyces pristinaespiralis CGMCC 0957 in submerged fermentation was carried out using the statistical methodologies based on the Plackett–Burman design, the steepest ascent method, and the central composite design (CCD). First, the Plackett–Burman design was applied to evaluate the influence of related nutrients in the medium. Soluble starch and MgSO4·7H2O were then identified as the most significant nutrients with a confidence level of 99%. Subsequently, the concentrations of the two nutrients were further optimized using response surface methodology of CCD, together with the steepest ascent method. Accordingly, a second-order polynomial regression model was finally fitted to the experimental data. By solving the regression equation from the model and analyzing the response surface, the optimal levels for soluble starch and MgSO4·7H2O were determined as 20.95 and 5.67g/L, respectively. Under the optimized medium, the yield of pristinamycins in the shake flask and 5-L bioreactor could reach 1.30 and 1.01g/L, respectively, which is the highest yield reported in literature to date.  相似文献   

4.
Laccase production by solid-state fermentation (SSF) using an indigenously isolated white rot basidiomycete Ganoderma sp. was studied. Among the various agricultural wastes tested, wheat bran was found to be the best substrate for laccase production. Solid-state fermentation parameters such as optimum substrate, initial moisture content, and inoculum size were optimized using the one-factor-at-a-time method. A maximum laccase yield of 2,400 U/g dry substrate (U/gds) was obtained using wheat bran as substrate with 70% initial moisture content at 25°C and the seven agar plugs as the inoculum. Further enhancement in laccase production was achieved by supplementing the solid-state medium with additional carbon and nitrogen source such as starch and yeast extract. This medium was optimized by response surface methodology, and a fourfold increase in laccase activity (10,050 U/g dry substrate) was achieved. Thus, the indigenous isolate seems to be a potential laccase producer using SSF. The process also promises economic utilization and value addition of agro-residues.  相似文献   

5.
The production of dextransucrase from Leuconostoc mesenteroides NRRL B-640 was investigated using statistical approaches. Plackett-Burman design with six variables, viz. sucrose, yeast extract, K(2)HPO(4), peptone, beef extract, and Tween 80, was used to screen the nutrients that significantly affected the dextransucrase production. 2(4)-Central composite design with four selected variables (sucrose, K(2)HPO(4), yeast extract, and beef extract) was used for response surface methodology (RSM) for optimizing the enzyme production. The culture was grown under flask culture with 100 ml optimized medium containing 30 g/l sucrose, 18.5 g/l yeast extract, 15.3 g/l K(2)HPO(4), and 5 g/l beef extract at 25 degrees C and shaking at 200 rpm gave dextransucrase with specific activity of 0.68 U/mg. Whereas the same optimized medium in a 3.0-l bioreactor (1.4 l working volume) gave an experimentally determined value of specific activity of 0.70 U/mg, which was in perfect agreement with the predicted value of 0.65 U/mg by the statistical model.  相似文献   

6.
Exoglucanase production by brown rot fungus Fomitopsis sp. RCK2010 was optimized under solid-state fermentation using Plackett–Burman design (PBD) and response surface methodology (RSM). Four fermentation variables (moisture, inoculum level, casein, and Triton X-100) were identified to effect cellulase production significantly by PBD, which were further optimized using RSM of central composite design. An overall 130 % increase in enzyme production was achieved by the optimization of variables using statistical approaches. Moreover, crude cellulase from Fomitopsis sp. RCK2010 was applied to saccharify pretreated Prosopis juliflora (cellulosic fraction), which resulted in the release of 327.35 mg/g of reducing sugars that could further be utilized for bioethanol production.  相似文献   

7.
Optimization of alcoholic‐assisted dispersive liquid–liquid microextraction of pentachlorophenol (PCP) and determination of it with high‐performance liquid chromatography (UV‐Vis detection) was investigated. A Plackett‐Burman design and a central composite design were applied to evaluate the alcoholic‐assisted dispersive liquid–liquid microextraction procedure. The effect of seven parameters on extraction efficiency was investigated. The factor studied were type and volume of extraction and dispersive solvents, amount of salt, and agitation time. According to Plackett‐Burman design results, the effective parameters were type and volume of extraction solvent and agitation time. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 170‐μL 1‐octanol and 5‐min agitation time. The enrichment factor of PCP was 242 with limits of detection of 0.04 μg L?1. The linearity was 0.1–100 μg L?1 and the extraction recovery was 92.7%. RSD for intra and inter day of extraction of PCP were 4.2% and 7.8%, respectively for five measurements. The developed method was successfully applied for the determination of PCP in environmental water samples.  相似文献   

8.
A new composite coating of polypyrrole and sodium lauryl ether sulfate was electrochemically prepared on a stainless‐steel wire using cyclic voltammetry. The application and performance of the fiber was evaluated for the headspace solid‐phase microextraction of a fragrance in aqueous bleach samples followed by gas chromatography combined with mass spectrometry to assess the fragrance stability in this kind of household cleaning product. To obtain a stable and efficient composite coating, parameters related to the coating process such as scan rate and numbers of cycles were optimized using a central composite design. In addition, the effects of various parameters on the extraction efficiency of the headspace solid‐phase microextraction process such as extraction temperature and time, ionic strength, sample volume, and stirring rate were investigated by experimental design methods using Plackett–Burman and Doehlert designs. The optimum values of 53°C and 28 min for sample temperature and time, respectively, were found through response surface methodology. Results show that the combination of polypyrrole and sodium lauryl ether sulfate in a composite form presents desirable opportunities to produce new materials to study fragrance stability by headspace solid‐phase microextraction.  相似文献   

9.
10.
A multivariate approach for testing the robustness of a capillary electrophoresis method using the "short-end injection" technique is presented. Firstly, a Plackett and Burman (PB) design with 11 factors (eight real factors and three dummies) was used to identify the critical factors on resolution, plate number, plate count, asymmetry and assay. Then, the factors which were found to be significant were studied in a central composite design to predict the variation of resolution inside the area investigated in the PB design. PB and central composite designs yielded conclusions that were in good agreement with one another. They showed that the separation could be considered as robust, notwithstanding the fact that some factors where found to be statistically significant and should be controlled (injected volume and electrolyte concentration). Using the factor values which gave the worst-case situation for Rs still led to acceptable values for this parameter.  相似文献   

11.
Extraction and determination of estrogens in water samples were performed using alcoholic-assisted dispersive liquid–liquid microextraction (AA-DLLME) and high-performance liquid chromatography (UV/Vis detection). A Plackett–Burman design and a central composite design were applied to evaluate the AA-DLLME procedure. The effect of six parameters on extraction efficiency was investigated. The factors studied were volume of extraction and dispersive solvents, extraction time, pH, amount of salt and agitation rate. According to Plackett–Burman design results, the effective parameters were volume of extraction solvent and pH. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 220 μL 1-octanol as extraction solvent, 700 μL ethanol as dispersive solvent, pH 6 and 200 μL sample volume. Linearity was observed in the range of 1–500 μg L?1 for E2 and 0.1–100 μg L?1 for E1. Limits of detection were 0.1 μg L?1 for E2 and 0.01 μg L?1 for E1. The enrichment factors and extraction recoveries were 42.2, 46.4 and 80.4, 86.7, respectively. The relative standard deviations for determination of estrogens in water were in the range of 3.9–7.2 % (n = 3). The developed method was successfully applied for the determination of estrogens in environmental water samples.  相似文献   

12.
The major constraint in the enzymatic saccharification of biomass for ethanol production is the cost of cellulase enzymes. Production cost of cellulases may be brought down by multifaceted approaches which includes the use of cheap lignocellulosic substrates for fermentation production of the enzyme, and the use of cost efficient fermentation strategies like solid state fermentation (SSF). The current study investigated the production of cellulase by Trichoderma reesei RUT C30 on wheat bran under SSF. Process parameters important in cellulase production were identified by a Plackett and Burman design and the parameters with significant effects on enzyme production were optimized for maximal yield using a central composite rotary design (CCD). Higher initial moisture content of the medium had a negative effect on production whereas incubation temperature influenced cellulase production positively in the tested range. Optimization of the levels of incubation temperature and initial moisture content of the medium resulted in a 6.2 fold increase in production from 0.605 to 3.8 U/gds of cellulase. The optimal combination of moisture and temperature was found to be 37.56% and 30 °C, respectively, for maximal cellulase production by the fungus on wheat bran.  相似文献   

13.
An extraction method based on dispersive nanomaterial ultrasound‐assisted microextraction was used for the preconcentration of carbofuran and propoxur insecticides in water samples prior to high‐performance liquid chromatography with UV detection. ZnS:Ni nanoparticles were synthesized based on the reaction of the mixture of zinc acetate and nickel acetate with thioacetamide in aqueous media and then loaded on activated carbon (ZnS:Ni‐AC). Different methods were used for recognizing the properties of ZnS:Ni‐AC and then this nanomaterial was used for extraction of carbamate insecticide as new adsorbent. The influence of variables on the extraction method (such as amount of adsorbent (mg: NiZnS‐AC), pH and ionic strength of sample solution, vortex and ultrasonic time (min), ultrasound temperature and desorption volume (mL) was investigated by a screening 27–4 Plackett–Burman design. Then the significant variables were optimized by using a central composite design combined with a desirability function. At optimum conditions, this method had linear response >0.0060–10 μg/mL with detection limit 0.0015 μg/mL and relative standard deviations <5.0% (n = 3).  相似文献   

14.
Application of statistical experimental designs for optimization of fermentation parameters to enhance ethanol production, which is an economical and renewable energy source using Saccharomyces cerevisiae NCIM 3090 from palmyra jaggery, was studied in a batch fermentor. Using Plackett–Burman design, impeller speed, concentrations of CoCl2 and KH2PO4 were identified as significant variables, which highly influenced ethanol production, and these variables were further optimized using a central composite design (CCD). The ethanol production was adequately approximated with a full quadratic equation obtained from three factors and five levels of CCD. Maximum ethanol concentration of 132.56 g/l (16.8% [v/v]) was obtained for an impeller speed of 247.179 (≈250) rev/min, CoCl2 of 0.263 g/l and KH2PO4 of 2.39 g/l. A second-order polynomial regression model was fitted and was found adequate with R 2 of 0.8952. This combined statistical approach enables rapid identification and investigation of significant parameters for improving the ethanol production and could be very useful in optimizing processes.  相似文献   

15.
An ultrasound‐assisted, hybrid ionic liquid, dispersive liquid–liquid microextraction method coupled to high‐performance liquid chromatography with a variable‐wavelength detector was developed to detect ten insecticides, including diflubenzuron, triflumuron, hexaflumuron, flufenoxuron, lufenuron, diafenthiuron, transfluthrin, fenpropathrin, γ‐cyhalothrin and deltamethrin, in fruit juices. In this method, an appropriate extraction solvent was chosen based on the partition coefficient of the target compounds. A mixture of 1‐octyl‐2,3‐dimethylimidazolium bis(trifluoromethylsulfonyl)imide and 1‐hexyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used as the extractant. The extraction efficiency was screened using Plackett–Burman design and optimized using central composite design. Under the optimal conditions, good linearity was obtained for all the analytes in the pure water model and the fruit juice samples. In pure water, the recoveries of the ten insecticides ranged from 85.7 to 108.9%, with relative standard deviations for one day ranging from 1.24 to 2.64%. The limits of detection were in the range of 0.19–0.69 μg/L, and the enrichment factors were in the range of 123–160. The logarithm of the n‐octanol/water partition coefficient in this experiment is a useful reference to select a suitable extraction solvent, and the proposed technique was applied for the analysis of ten insecticides in fruit juice with satisfactory results.  相似文献   

16.
Rhodotorula mucilaginosa, producing the ethyl carbamate (EC)-degrading enzyme, urethanase, was newly isolated from the Chinese rice wine making process. It removed 80 % of EC when it was incubated with 5.0 g/L EC. It grew and stably produced urethanase, with pH ranging from 7.0 to 3.0. In addition, urethanase production by R. mucilaginosa was systematically optimized. Glucose, yeast extract, peptone, and inoculum size were selected with the Plackett–Burman design. They were further optimized via uniform design and determined to be 24.6 g/L, 2.5 g/L, 23.1 g/L, and 65.8 mL/500 mL, respectively. Urethanase activity reached 4,340.0 U/L in the optimal fermentation condition. Furthermore, cell immobilization of R. mucilaginosa in calcium alginate/chitosan was applied to improve cell resistance to environmental stresses. The immobilized cells removed 51.6 % of EC in commercial rice wine, which was 10 times more than that of the free cells. It indicated that the immobilized R. mucilaginosa was effective for degrading EC.  相似文献   

17.
In this paper, the review on application of factorial-based designs in liquid chromatography (LC) is given. The most useful and applicable full factorial design and reduced forms of full factorial design (fractional factorial design and Plackett–Burman design) applied in LC are presented. Literature survey shows that experimental design presents very often used tool in screening, optimization and robustness testing of LC methods.  相似文献   

18.
A SBA‐15/polyaniline para‐toluenesulfonic acid nanocomposite supported micro‐solid‐phase extraction procedure has been developed for the extraction of parabens (methylparaben, ethylparaben, and propylparaben) from wastewater and cosmetic products. The variables of interest in the extraction process were pH of sample, sample and eluent volumes, sorbent amount, salting‐out effect, extraction and desorption time, and stirring rate. A Plackett–Burman design was performed for the screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design. The optimum experimental conditions found at 50 mL sample solution, extraction and desorption times of 40 and 20 min, respectively, 500 μL of 3% v/v acetic acid in methanol as eluent, 0.01 M salt addition, and 10 mg of the sorbent. Under the optimum conditions, the developed method provided detection limits in the range of 0.08–0.4 ng/mL with good repeatability (RSD% < 7) and linearity (r2 = 0.997–0.999) for the three parabens. Finally, this fast and efficient method was employed for the determination of target analytes in cosmetic products and wastewater, and satisfactory results were obtained.  相似文献   

19.
Xylose effective utilization is crucial for production of bulk chemicals from low-cost lignocellulosic substrates. In this study, an efficient l-lactate production process from xylose by a mutant Bacillus coagulans NL-CC-17 was demonstrated. The nutritional requirements for l-lactate production by B. coagulans NL-CC-17 were optimized statistically in shake flask fermentations. Corn steep liquor powder and yeast exact were identified as the most significant factors by the two-level Plackett–Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors, and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform batch fermentation in a 3-l bioreactor. A maximum of 90.29 g l?1? l-lactic acid was obtained from 100 g l?1 xylose in 120 h. When using corn stove prehydrolysates as substrates, 23.49 g l?1? l-lactic acid was obtained in 36 h and the yield was 83.09 %.  相似文献   

20.
A key feature of rice acceptance by consumers is closely related to its aroma. A few decades of research on rice aroma indicated associated difficulties which arise from its complicated volatile composition. Our investigation seeks to resolve this highly complicated aroma profile using an experimental design for headspace solid-phase microextraction GC–MS. The Plackett–Burman methodology was used as a factor screening method for the headspace solid-phase microextraction procedure and GC–MS analysis, and a central composite design was implemented as an optimization methodology for both steps. Optimization of the extraction procedure and GC–MS analysis leads to a highly resolved rice aroma profile resulting in 66 new constituents. A total of 123 constituents were identified by implementing the procedure on Champa rice from the south of Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号