首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcellular thin polycarbonate sheets have been prepared by compression molding with the cell size in the range of 2∼20 microns, and cell density larger than 108 cells/cm3. The effect of processing parameters on the microcellular polycarbonate structure has been investigated. The cell size decreases with increasing foaming time till 8 minute and then increases. Besides this parameter slightly decreases with increasing foaming pressure, but increases with increasing temperature. The variation of cell density is contrary to that of cell size, and the foam density decreases with increasing foaming pressure and foaming temperature and displays a variable trend with increasing foaming time under different foaming pressures.  相似文献   

2.
High‐performance microcellular closed‐cell foams were prepared by a two‐stage batch foaming process from fluorinated poly(ether ether ketone) and characterized by scanning electronic microscopy, tensile, and dynamic mechanical analysis (DMA). The effects of saturation pressure and temperature on the cell size, cell density, and bulk density of porous materials had been discussed. The resulting materials had average cell diameters in the range 3–17 μm, and cell densities (Nf) in the order of 0.6 × 109–1.39 × 1010 cells/cm3. The porosity (Vf) was in the range of 0.2–0.85. In contrast, experimental values of Young's moduli were in good agreement with theoretically predicted values, but the relative strengths were somewhat lower than that predicted. The relaxation mechanism of microcellular was systematically investigated by DMA. The dynamic mechanical spectrometry showed that the storage modulus curve at high temperature region appeared a peak and the loss modulus was lower as compared to their solid counterparts. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 173–183, 2007  相似文献   

3.
This study dedicates to foaming of biocompatible blends of polylactic acid and thermoplastic polyurethane reinforced with bio-degradable cellulose nanofibers. This research primarily was associated with fabrication of PLA-TPU nanocomposites using a low weight fraction of cellulose nanofibers as a biodegradable reinforcement. Microstructural and mechanical properties of fabricated nanocomposites were examined and diffractometry was utilized to verify formation of percolated nanocomposites. Microcellular foaming was then performed with CO2 as a blowing agent. Central composite design was applied in designing the experiments to evaluate the effects of main operating variables consisting of saturation pressure and time, heating time and foaming temperature. The results demonstrated that high saturation pressure and time promoted low cell diameters (below 5 μm) and high cell densities (above 109 cell/cm3) due to the grown degree of crystallinity and higher PLA-TPU miscibility. Accordingly, adding TPU and CNF to the matrix create high crystalline foamed samples decorated with low bulk density.  相似文献   

4.
《先进技术聚合物》2018,29(2):716-725
Foaming of trans‐1,4‐polyisoprene (TPI) polymer was carried out through a batch process using nitrogen (N2) as the blowing agent. TPI vulcanizates having varying crosslink densities were prepared by varying crosslinking agent content and curing time. The vulcanizates were then saturated with N2 inside a pressure vessel at a pressure of 14 MPa and varying temperatures for 5 hours before effecting the foaming by rapidly quenching the pressure. The effects of varying the crosslinking agent content, silica filler content, and precuring time of the vulcanizates and the effects of varying the gas saturation temperature of foaming on the cell characteristics and physical properties of the foam prepared were investigated. The cells of the TPI foams had a spherical, closed structure. The density, expansion ratio, cell size, cell density, and tensile properties of the foams varied with varying crosslink density of the TPI vulcanizates as well as the saturation temperature of foaming. The important effects of crosslink density and saturation temperature on the N2 solubility in the TPI matrix and thus on the foam expansion were discussed. The silica filler was found to be acting as a cell nucleating agent and reinforcing filler for the TPI foams.  相似文献   

5.
In this study, dynamic behaviour of nucleation was investigated during foaming process of polystyrene in presence of nano aluminium oxide. Nano aluminium oxide played a role of a bubble nucleating agent within polystyrene matrix. Foaming process was visually observed in conjunction with supercritical N2. Furthermore, the effect of nano Al2O3 compositions on the growth rate was studied. Also, final density per unit area and the average size in the latest growth steps were assessed. The obtained data were compared with foaming process for unfilled polystyrene under the same conditions. The results demonstrated that the final sizes of bubbles as well as the average cell density of the foam were reduced by using of nucleating agent. The growth rate of bubbles was also decreased by increasing the nano Al2O3 particles content. In addition, influence of temperature on foam density of nanocomposite specimens was greater than unfilled polystyrene foam. In presence of nano particle, the cell density was uniformly distributed in nanocomposites specimens. The article is published in the original.  相似文献   

6.
《先进技术聚合物》2018,29(7):1953-1965
Poly(butylene succinate) urethane ionomer (PBSUIs) foams with nano‐microcellular morphology were fabricated using supercritical CO2 (sc‐CO2) at different parameters. Effect of urethane ionic group (UIG) content (ranged from 1% to 5%) on the rheology and crystallization of PBSUIs were evaluated by intrinsic, dynamic rheological, X‐ray diffraction, and differential scanning calorimetry measurements. The results show that the complex viscosity of PBSUIs vastly improved, while their intrinsic viscosity and crystallinity decreased. They also evidenced that CO2 promoted the formation of crystallites in the amorphous and increased the Xc of PBSU and PBSUIs foams. Scanning electron microscope was employed to explore the influences of UIG content and foaming parameters on the morphologies of PBSUIs microcellular foams, and it revealed that UIG content was the dominated factor. The cell size and cell densities of PBSUIs microcellular foams were smaller than 5.0 micrometers and higher than 1.5 × 1010 cells/cm3, respectively, even foamed at diverse variations of foam temperature and pressure. Interestingly, PBSUIs with 3% and 5% UIG content achieved microcellular foams in nano‐cells, high‐stretched elliptical shape. The mechanism was ascribed that these PBSUIs with high melt viscosities could retard the CO2 bubbles to merge during the foam process and induce the cells to stretch and orient in depressururization direction. This study proposed a novel method for fabricating PBS nano‐microcellular foams.  相似文献   

7.
In this article, we report on the process for creating microcellular and nanocellular polysulfone (PSU) foams. Microcellular foams with cell size up to 8 µm and nanocellular foams with cell size in the range of 20–30 nm were created. A range of CO2 concentration was achieved by varying saturation temperature, from 5% at 60 °C to 14.7% at ?10 °C. The CO2 concentration has a strong influence on the cellular structure. There exists a critical concentration window, between 10.7% and 12.3%, within which cell nucleation densities increase rapidly and cell sizes drop from micrometer range to below 1 µm into the nanometer range. Nanofoams with cell nucleation densities exceeding 1015 cells/cm3 and void fraction of up to 48% are achieved. At the high CO2 concentration region, the change from closed nanocellular structure to bicontinuous nanoporous structure is observed. Also, nanostructures on the cell wall of microcells are observed and believed to be formed via stress‐induced nucleation/spinodal decomposition. The PSU nanofoams produced in this study present an opportunity to produce polymer nanofoams with a relatively high service temperature. The ability to create cells of different length scales provides an opportunity to study the effect of cell size on the foams properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 975–985  相似文献   

8.

The parameters of foaming and nano-clay percentage on the density of polymer foam and cell size with the PVC field is studied. Cell size and density have a significant impact on the strength of foam and its insulation (including sounds and thermal insulation). By optimizing cell size and density, foam can be produced with the best mechanical properties. In foaming process of the nanocomposite samples by mass method, the design variables (input parameters) are foaming time and temperature and MMT content. The controlled elitist multi-objective GA is applied to minimize both the foam density and the cell size. To that end, the population size and the Pareto fraction are selected as 100 and 0.5, respectively. The noninferior solution obtained by the controlled elitist multi-objective GA is illustrated. When both the MMT and the temperature are high, the resulting foam does not have ideal characteristics.

  相似文献   

9.
A new type of polyimide foam (PIF) was prepared and characterized based on a one‐pot process by the reaction of a first solution with different ratios of a second solution. The first solution was comprised of pyromellitic dianhydride (PMDA), N, N‐dimethyl formamide (DMF), methanol, water, surfactant, and catalysts, while the second solution contained polyaryl polymethylene isocyanate (PAPI). In the present study, the relationships among compositions, structures, and properties of PIFs were investigated. The results indicated that with the increase in the weight ratio of PAPI/(first solution), the foaming degrees of PIFs increased from 10.14 to 10.52 times and the apparent densities before postcure decreased from 15.96 to 14.51 kg/m3. The open cell contents, average sound absorption coefficients, and average cellular diameters of PIFs after postcure increased with increase in the weight ratio of PAPI/(first solution). The glass transition temperatures (Tg) of PIFs after postcure first increased from 287 to 299°C, then decreased to 292°C, and the 5% weight loss temperatures and 10% weight loss temperatures presented the same trend as well. The compressive and flatwise tensile properties scaled very well with the relative densities of the foams after postcure, with the highest compressive strength of 0.03 MPa and the highest flatwise tensile strength of 0.15 MPa. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The foam performances of 3‐dodecoxy‐2‐hydroxypropyl trimethylammonium chloride (C12TAC) have been determined in the existence of different relative amount of polymer. The experimental results show that the foaming ability of the mixture systems of the C12TAC/PEG and C12TAC/PVP is stronger than that of the surfactant solutions in the absence of polymer, and with the increase of relative amount of polymer both foaming efficiency and foam stability of the surfactant solutions are evidently enhanced. For the aqueous solution of the surfactant, effect of temperature on foaming properties has also been examined. The results show that both the foaming ability and stability of the foams of the surfactant solutions are highest (or strongest) at 30°C.  相似文献   

11.
Polymeric foam materials may be used as energy absorbing materials for protection in impact scenarios, and design with these materials requires the mechanical properties of foams across a range of deformation rates, where high deformation rate testing often requires small samples for testing. Owing to their cellular macrostructure, and the large deformations that occur during loading of foams, the measured stress-strain response of a foam material may be influenced by the sample size. In this study, the mechanical properties of three closed-cell polymeric foams (Low Density Polyethylene, Expanded Polystyrene and Expanded Polypropylene) at two different densities were investigated over a range of deformation rates from 0.01 s−1 to 100 s−1. For each foam material, three different nominal sample sizes (10 mm, 17 mm and 35 mm) were tested. On average, the polymeric foam materials exhibited increasing stress with increasing deformation rate, for a given amount of strain.Density variation was identified at the sample level, with smaller samples often exhibiting lower density. Expanded Polystyrene demonstrated the highest variability in sample density and corresponding variability in mechanical response, qualitatively supported by observed variations in the macrostructure of the foam. Expanded Polypropylene exhibited variability in density with sample size, and observable variability in the material macrostructure; however, the dependence of the measured mechanical properties on sample size was modest. Low Density Polyethylene was found to have a relatively consistent cell size at the macrostructure level, and the material density did not vary significantly with sample size. In a similar manner, the dependence of measured mechanical properties on sample size was modest. The effect of sample size was identified to be material specific, and it is recommended that this be assessed using sample-specific density measurements and considering different sized samples when testing foam materials.  相似文献   

12.
Time and spacially resolved spectra of a cylindrically symmetric exploding thin film plasma were obtained with a rotating mirror camera and astigmatic imaging. These spectra were decouvolved to obtain relative spectral emissivity profiles for nine Fe(II) and two Fe(I) lines. The effective (electronic) excitation temperature at various positions in the plasma and at various times during the first current halfcycle was computed from the Fe(II) emissivity values using the Boltzmann graphical method. The Fe(II)/Fe(I) emissivity ratios together with the temperature were used to determine the degree of ionization of Fe. Finally, the electron density was estimated from the Saha equilibrium. Electronic excitation temperatures range from 10,000–15,000 K near the electrode surface at peak discharge current to 7000–10,000 K at 6–10 mm above the electrode surface at the first current zero. Corresponding electron densities range from 1017-1018 cm?3 at peak current to 1015-1016cm?3 near zero current. Error propagation and criteria for thermodynamic equilibrium are discussed.  相似文献   

13.
The preparation of microcellular polystyrene (PS), lightly sulfonated polystyrene (SPS), zinc‐neutralized lightly sulfonated polystyrene (ZnSPS), and blends of PS/SPS and PS/ZnSPS via supercritical CO2 was carried out with the pressure‐quench process. Both higher foaming temperature and lower pressure result in larger cell sizes, lower cell densities, and lower relative density for microcellular ionomers and blends as for microcellular PS. The difference among various microcellular samples is the change of cell size with the sample composition. The cell size decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. The diffusivity of CO2 in samples also decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. For this series of samples with similar structure and identical solubility of CO2, the varying diffusivity is responsible for the difference of cell sizes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 368–377, 2003  相似文献   

14.
In order to be able to apply the principles of foam chromatography to ion-exchange processes, preparative methods for open-cell ion-exchange foams, were investigated. Homogeneous ion-exchange foams were prepared by introducing ion-exchange groups on previously prepared phenol-formaldehyde, polyurethane and polyethylene foams. The maximum capacity of the produced sulfonated phenol-formaldehyde cation-exchange foams was 1.85 meq g-1; that of the styrene-polyurethane interpolymer anion-exchange foams was 2.2 meq g-1. Weak carboxylic ion-exchange foams were prepared by radiation grafting of polyurethane and polyethylene foams; the maximum capacity of these foams was 4.02 meq g-1. Heterogeneous ion-exchange foams were prepared by foaming a fine powder of a commercially available cation exchanger with the precursors of open-cell polyether-type polyurethane foam. The capacity of such a foam containing 26% ion-exchange powder was 1.0 meq g-1. The kinetics of the cation-exchange process on the heterogeneous foams was measured with 85Sr.  相似文献   

15.
新型孪尾Gemini两性离子表面活性剂应用性能   总被引:1,自引:0,他引:1  
分别采用改进的Ross-Miles法及分水时间法,对3种新型孪尾Gemini两性离子表面活性剂(C8C8L3Sz、C8C8L4Sz和C10C8L3Sz)的泡沫性能及乳化性能进行了研究,并考察了表面活性剂浓度、分子结构和温度等对其的影响。 结果表明,该系列表面活性剂具有较好的泡沫性能,且随其浓度的增加,泡沫最大高度和半衰期均存在一个稳定值,疏水链越长,其起泡性能越差,泡沫稳定性越好;温度升高,起泡性能变好,泡沫稳定性变差;当表面活性剂浓度一定时,体系中加入低浓度的短链醇及无机盐均能提高泡沫的稳定性;C8C8L3Sz、C8C8L4Sz和C10C8L3Sz作乳化剂的最适宜的用量分别为6×10-4、6×10-4和4×10-4 mol/L,疏水基越长,乳化性能越好,而连接基对其影响较小;温度升高,乳化性能变差;当油相烷烃碳数相同时,环烷烃要比直连烷烃更易达到最佳乳化效果,但二者的乳状液稳定时间相当;对于油相烷烃碳数不同时,烷烃的碳链越长,乳状液的稳定性越差,乳化效果越不好。  相似文献   

16.
In situ affinity foam fractionation is a potential powerful tool for continuous, selective removal of products from bioprocesses. When evaluating its applicability to cellulase production by Trichoderma reesei fermentation, we encountered the difficulty of significant removal of fungal mycelia along with the cellulase. To solve this problem, cell immobilization using cut pieces of hydrophilic polyurethane (PU) foam was evaluated. Five commercial PU foams with different pore sizes and porosities were tested. Two were found to support good cell growth, cellulase production, and cell loading (about 0.6 g dry cells per g PU). The PU-immobilized mycelia were successfully retained in the foaming process.  相似文献   

17.
In this paper, polymer foams based on a benzoxazine resin have been successfully prepared using azodicarbonamide (ADC) as a chemical blowing agent and have been characterized regarding their foaming behavior, cellular structure, and physical properties. The effect of the ADC on the curing process of the resin was analyzed using differential scanning calorimetry and blowing agent decomposition was followed by thermogravitmetric analysis (TGA). The characterization of the cellular structure of the foamed samples was done using scanning electron microscopy. The mechanical properties of the foams were determined using compression tests and the thermal conductivity was assessed using the transient plane source method. The results indicated that the curing process and gas release took place in a similar time interval. The foams showed an isotropic cellular structure with relative densities in the range 0.35–0.60, and showed compressive strengths and compressive moduli in the range of 10–70 MPa and 400–1100 MPa, respectively. Thermal conductivities were in the range of 0.06–0.12 W m?1K?1. The findings in this paper demonstrate the possibility of producing polybenzoxazine foams using a simple process in which curing and foaming take place simultaneously. In addition, the mechanical characterization of these materials indicates that they are suitable for structural applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Membrane foaming is a new method of foaming. To enlarge the knowledge about the influencing factors and to know how to vary the structure of the resulting foam, different factors were evaluated. A whey protein solution with 10% protein was foamed as a model solution by means of a tubular cross-flow filtration membrane. The pore size of the membrane was varied. The smaller the pore size, the smaller the bubbles produced. As a result, the foam firmness increases and less drainage was observed when smaller pore sizes were applied.

An important factor is that the added amount of gas must be stabilised as completely as possible in the foam. In order to achieve this, both the process and the product parameters were varied. Raising the foaming temperature increased the quantity of stabilised gas. The whey proteins then diffuse faster to the bubble surfaces and stabilise these by unfolding and networking reactions to prevent the coalescence of the bubbles.

The product parameter viscosity was found to influence the foaming result in such a way that up to a viscosity of 40 mPa s the incorporated gas bubbles are stabilised by the higher viscosity. At viscosities higher than 40 mPa s it is difficult to incorporate in the bubbles, and the foam structure becomes coarser due to increased coalescence at the pores of the membrane. The foam stability is enhanced with higher viscosities.  相似文献   


19.
Flame retardant polybenzoxazine foams were prepared in a two step process, by heating mixtures of the benzoxazine derived from renewable diphenolic acid (DPA-Bz) with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) or 9,10-dihydro-9-oxa-10-(1-hydroxy-1-methylethyl) phosphaphenanthrene-10-oxide (DOPO-2Me) as additives. In the first step partial curing was achieved at different times and temperatures. In the second step, these materials underwent self foaming when heated at 220 °C. By means of a factorial design 23 the effect of curing conditions and type of additive on the foam density were evaluated. DOPO-2Me additive was found to partially react with the DPA-Bz leading to a decrease in the glass transition temperature of the materials. The cellular structure of the foams was characterized by scanning electron microscope in terms of cell size, cell size distribution, closed-cell content and anisotropy ratio. The presence of DOPO-2Me into the solid precursors and foams greatly influenced the thermal degradation and the flame retardancy properties as evaluated by TGA, LOI and UL-94 respectively.  相似文献   

20.
《先进技术聚合物》2018,29(10):2643-2654
Supercritical carbon dioxide (scCO2) processed thermoplastic starch (scCO2aTPS), cellulose nanofiber (CNF) modified scCO2aTPS (scCO2aTPS100CNF0.02) and glutaraldehyde (GA) modified scCO2aTPS100CNF0.02 (scCO2aTPS100CNF0.02GAx) foams were prepared for the first time using scCO2 as a blowing agent during their foaming processes. The expansion ratio, cell density, moisture resistance, and compressive strength (σc) retention properties of each foam series were considerably improved with increasing scCO2 pressure during the foaming processes. The expansion ratios and cell densities of each scCO2aTPS100CNF0.02GAx foam series were increased considerably to a maximum value, as the GA content approached an optimum value. The optimal scCO211TPS100CNF0.02GA1.6 foam material exhibited a high expansion ratio and cell density at approximately 50 and approximately 8 × 108 cells/cm3, respectively. Compared with corresponding aged scCO2aTPS and scCO2aTPS100CNF0.02 foam specimens, considerably better moisture resistance and σc retention properties were observed for scCO2aTPS100CNF0.02GAx foam specimens, when they were modified with the corresponding optimum GA content. The moisture resistance and σc retention for optimal prepared scCO27TPS100CNF0.02GA0.4, scCO29TPS100CNF0.02GA0.8 and scCO211TPS100CNF0.02GA1.6 foam materials improved further with increasing scCO2 pressure. Possible reasons accounting for the highly expansion ratio, moisture resistance, and σc retention properties for scCO2aTPS100CNF0.02GAx foams are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号