首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dielectric and mechanical properties of hybrid polymer nanocomposites of polystyrene/polyaniline/carbon nanotubes coated with polyaniline(PCNTs) have been investigated using impedance analyzer and extensometer. The blends of PS/PANI formed the heterogeneous phase separated morphology in which PCNTs are dispersed uniformly. The incorporation of a small amount of PCNTs into the blend of PS/PANI has remarkably increased the dielectric properties. Similarly, the AC conductivity of PS/PANI is also increased five orders of magnitude from 1.6 × 10~(-10) to 2.0 × 10~(-5) S·cm~(-1) in the hybrid nanocomposites. Such behavior of hybrid nanocomposites is owing to the interfacial polarization occurring due to the presence of multicomponent domains with varying conductivity character of the phases from insulative PS to poor conductor PANI to highly conductive CNTs. Meanwhile, the tensile modulus and tensile strength are also enhanced significantly up to 55% and 160%, respectively, without much loss of ductility for three phase hybrid nanocomposites as compared to the neat PS. Thereby, the hybrid nanocomposites of PS/PANI/_P CNTs become stiffer, stronger and tougher as compared to the neat systems.  相似文献   

2.
In this study, an aniline (ANI) solution containing well‐dispersed multiwall carbon nanotubes (CNTs) has been prepared. With an aim of improving the dispersability of CNTs in ANI monomer, we synthesize CNTs/ANI complexes using a reflux technique which can be electrochemically polymerized to form well‐dispersed CNTs/polyaniline (PANI) films. The refluxed CNTs/ANI solution can be used to prepare high porous CNTs/PANI network via an electrochemical polymerization for applying as counter electrodes in dye‐sensitized solar cells. Compared with the pristine PANI, the multiwalled CNTs/PANI network shows more porous morphology and higher electrocatalytic activity, resulting in the acceleration of the reaction (triiodide (I3?) to iodide (I?)) of the redox electrolyte. The enhancement of the electrocatalytic activity is attributed to the interactions between multiwalled CNTs and PANI, promoting the quinoid ring structure and thus enhancing the conductivity of the polymer chains. The device, assembled with multiwalled CNTs/PANI network as counter electrodes, delivers 7.67% power conversion efficiency, which is comparable to 7.43% of that with Pt. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Since the discovery of carbon nanotubes (CNTs) and intrinsically conductive polymers, such as polyaniline (PANI) some research has focused on the development of novel hybrid materials by combining CNT and PANI to achieve their complementary properties. Electrically conductive elastomer nano‐composites containing CNT and PANI are described in the present investigation. The synthesis procedure includes in‐situ inverse emulsion polymerization of aniline doped with dodecylbenzene sulfonic acid in the presence of CNT and dissolved styrene‐isoprene‐styrene (SIS) block copolymer, followed by a precipitation–filtration step. The synthesis step is carried out under ultrasonication. The resulting uniform SIS/CNT/PANI dispersions are stable for long time durations. The incorporation of CNT/PANI in the SIS elastomeric matrix improves thermal, mechanical and electrical properties of the nano‐composites. The formation of continuous three‐dimensional CNT/PANI network, assumed to be responsible for enhancement of the resulting nano‐composite properties, is observed by HRSEM. A relatively low percolation threshold of 0.4 wt.% CNT was determined. The Young's modulus of the SIS/CNT/PANI significantly increases in the presence of CNT. High electrical conductivity levels were obtained in the ternary component systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Polyaniline (PANI)/carbon nanotubes (CNTs) composite electrode material was prepared by in situ chemical polymerization. The structure and morphology of PANI/CNTs composite are characterized by Fourier infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. It has been found that a flocculent PANI was uniformly deposited on the surface of CNTs. The supercapacitive behaviors of the PANI/CNTs composite materials are investigated with cyclic voltammetry, galvanostatic charge/discharge, impedance, and cycle life measurements. The results show that the PANI/CNTs composite electrodes have higher specific capacitances than CNT electrodes and better stability than the conducting polymers. The capacitance of PANI/CNTs composite electrode is as high as 837.6 F g−1 measured by cyclic voltammetry at 1 mV s−1. Besides, the capacitance retention of coin supercapacitors remained 68.0% after 3,000 cycles.  相似文献   

5.
Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) results indicate that the graphene has been exfoliated into a few layers (typically one, two, and three layers) during polymerization and has been uniformly dispersed in the PANI matrix. The graphene layer dispersion degree is quantified by a free-path spacing measurement (FPSM) method based on the TEM microstructures. The SIP method also demonstrates its feasibility for coating PANI on one-dimensional (1D) CNFs and CNTs without introducing additional surface functional groups. The effects of graphene size, loading level, and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The temperature-dependent conductivity behavior revealed a quasi-3D variable range hopping (VRH) electron transport mechanism for all the nanocomposites. Giant magnetoresistance (GMR) at room temperature is observed in pure PANI, which can be enhanced by the incorporation of a high loading of graphene (5%) due to the π-π stacking-induced efficient electron transport at the PANI/graphene interface. More interestingly, negative permittivity is found in each composite which can be easily tuned by adjusting the filler loading, morphology, and surface functionality.  相似文献   

6.
运用重氮化技术制备了水溶性磺化碳纳米管,在此基础上,以不同直径的磺化碳纳米管(1~2 nm,<8 nm,10~20 nm,30~50 nm)为载体,采用原位氧化聚合方法合成了一系列磺化碳纳米管改性聚苯胺复合材料.红外和紫外-可见光谱分析表明,聚苯胺与磺化碳纳米管之间存在π-π相互作用,并形成了电荷转移复合物;且随着碳纳...  相似文献   

7.
以具有三维开放网络结构的烧结8 μm-Ni金属纤维(SMF-Ni)为基底, 通过乙烯催化化学气相沉积法在金属纤维表面生长碳纳米管(CNTs), 制备了以金属Ni纤维网络为集流极、CNTs为离子存储库, 尺度跨越宏观、介观和纳米的自支撑薄层大面积CNTs/SMF-Ni(CNTs质量分数为50%)复合电极材料. 用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、N2吸附、脱附等温线和X射线衍射(XRD)等方法对电极材料进行了表征, 并考察了其作为电极对质量分数为0.01%的NaCl水溶液的电容脱盐性能. 自支撑CNTs/SMF-Ni复合电极材料由于具有优异的离子传导和表面电荷传递性能以及较大的介孔表面积, 在1.2 V的工作电压和5 mL/min的水溶液流速下, 对NaCl的电吸附容量和脱盐率分别达159 μmol/g CNTs和57%. 用H2O2对CNTs/SMF-Ni电极材料进行氧化处理后, CNTs表面含氧基团的大量增加增大了材料的亲水性, 从而进一步提升了该复合材料的电容脱盐性能.  相似文献   

8.
通过有机化学合成法先在碳纳米管表面接枝上苯胺单体,然后在不锈钢电极表面在硫酸溶液中采用循环伏安法电化学沉积聚合制得碳纳米管/聚苯胺(CNTs/PANI)纳米复合材料.扫描电子显微镜和傅立叶变换红外光谱表征所得材料的微观结构和基团,循环伏安和恒流充放电测试用于考察所得CNTs/PANI纳米复合材料的电化学性能.所得结果与...  相似文献   

9.
通过溶胶-凝胶法制备了Li2FeSiO4@C/CNTs(LFS@C/CNTs)纳米复合材料,其中三嵌段共聚物P123用作结构导向剂和碳源,碳纳米管作为导电线提高材料的导电性。LFS@C/CNTs不仅具有海绵状纳米孔,能够与电解液充分接触改善锂离子的传输路径,同时由非晶碳和碳纳米管构成的三维桥联导电网络利于电子的快速传递,提高了材料大电流充放电能力和循环稳定性。复合后的LFS@C/CNTs的高倍率性能相比LFS@C明显提高, 当CNTs的掺量为4%,电压窗口为1.5~4.5 V,0.1C电流密度下放电比容量为182 mAh·g-1。在10C经70次循环后该材料的放电比容量能保持在117 mAh·g-1,是LFS@C放电比容量(55 mAh·g-1)的两倍。  相似文献   

10.
Electrocatalytic properties (towards reduction of bromate in 0.5 mol dm−3 H2SO4) of multi-walled carbon nanotubes (CNTs) modified with phosphododecamolybdate (PMo12) monolayers have been diagnosed using cyclic voltammetry and amperometry. The ability of negatively charged PMo12-modified CNTs to attract electrostatically ultra-thin, positively charged conducting polymer (PEDOT or polypyrrole) structures is explored to grow in controlled manner hybrid organic-inorganic network electrocatalytic films. Due to the presence of three-dimensionally distributed CNTs, the films’ conductivity and porosity are improved. The hybrid systems utilizing polypyrrole, rather than PEDOT, have produced fairly higher bromate electroreduction catalytic currents. Comparison is also made to Nafion-stabilized dispersion of PMo12-modified CNTs inks. The latter system is characterized by good stability and relatively the highest sensitivities with respect to bromate concentration.  相似文献   

11.
In this work, single-crystalline MnO2 nanoparticles were directly grown on the surface of multi-walled carbon nanotubes (CNTs) homogeneously under in-situ hydrothermal conditions, during which the CNTs were well dispersed in aqueous solution with the aid of dodecyl benzene sulphonic acid sodium (SDBS). This stable suspension ensures the continuous deposition of the MnO2 nanocrystals. It was found that the MnO2/CNTs nanocomposites formed in the presence of CNTs, but the MnO2 nanowires formed without CNTs under the same hydrothermal conditions. Moreover, the as-synthesized MnO2/CNTs sample showed a high specific capacity and cycling stability, which was ascribed to its highly-homogeneous hybrid nanostructure. This homogeneous MnO2/CNTs nanocomposite is shown to be able to take full advantages of both the high capacity of MnO2 and the high electron conductivity of CNTs by integrating them homogeneously. This homogeneous hybrid nanostructure is a promising electrode material for energy storage/conversion devices with excellent performances.  相似文献   

12.
Hybridization of multi wall carbon nanotubes (MWCNTs) with other filler in polymer matrix composites (PMC) is one of the techniques for combining different properties of fillers for making more unique composites. In this work, the hybrid filler (CNTs–dolomite) are prepared via chemical vapour deposition (CVD hybrid) and the milling method (physically hybrid). The effect of different hybrid method on properties of multi wall carbon nanotubes/dolomite hybrid filled phenolic composites were studied. Phenolic/CVD hybrid composites and phenolic/physically hybrid composites with different filler loadings were prepared using hot mounting press. The prepared samples were characterized for their thermal conductivity and hardness. The thermal conductivity was measured using the Transient Plane Source (TPS) method, using a Hot-DiskTM Thermal Constant Analyzer and the hardness was measured using Rockwell micro-hardness. The results showed that at 5% filler loading, the phenolic/CVD hybrid composites were capable of increasing the thermal conductivity and micro-hardness up to 7.22% and 101.6% respectively compared to pure phenolic.  相似文献   

13.
The work describes the synthesis of a hybrid material starting from surface-modified colloidal particles of styrene (ST)-acrylic acid (AA) copolymer and carbon nanotubes (CNTs). Vinyl double bonds have been chemically grafted on the surface of the ST-AA copolymer particles in order to be able to copolymerize with acrylamide (AM). The hybrid material was obtained by reaction between the free radicals resulted from both copolymerization and AM homopolymerization and the superficial groups of modified CNTs. Due to the difference between the diameter of the polymer particles and the one of the CNTs, a change in the CNTs shape is to be expected (disentanglement due to steric effects). The products thus obtained have been characterized using IR, SEM, XPS, Raman, and AFM techniques.  相似文献   

14.
陈枫  傅强 《高分子科学》2017,35(12):1497-1507
In this article,hybrid fillers with different dimensions,namely,2-dimensional (2-D) expanded graphite (EG) and 1-dimensional (1-D) multi-walled carbon nanotubes (CNTs),were added to aromatic nylon MXD6 matrix via melt-blending,to enhance its thermal and electrical conductivity as well as electromagnetic interference shielding effectiveness (EMI SE).For ternary composites of MXD6/EG/CNTs,the electrical conductivity reaches up nine orders of magnitude higher compared to that of the neat MXD6 sample,which tumed the polymer-based composites from an insulator to a conductor,and the thermal conductivity has been enhanced by 477% compared with that of neat MXD6 sample.Meanwhile,the EMI SE of ternary composite reaches ~50 dB at the overall filler loading of only 18 wt%.This work can provide guidance for the preparation of polymer composites with excellent thermal and electrical conductivity via using hybrid filler.  相似文献   

15.
自组装的氢氟酸掺杂的聚苯胺微/纳米管   总被引:2,自引:0,他引:2  
以氢氟酸为掺杂剂,采用无模板法制得了高电导率(10-2-10-1S/cm)聚苯胺微/纳米管(d=85-420nm).当[HF]/[An]=0.5时所得微/纳米管的形成机率高达100%.发现微/纳米管的直径和电导率均随[HF]/[An]比例的增加而增加.FTIR,UV-Vis,XRD结构表征证明所得的聚苯胺微/纳米管为掺杂态.  相似文献   

16.
通过溶胶-凝胶法制备了Li2FeSiO4@C/CNTs(LFS@C/CNTs)纳米复合材料,其中三嵌段共聚物P123用作结构导向剂和碳源,碳纳米管作为导电线提高材料的导电性。LFS@C/CNTs不仅具有海绵状纳米孔,能够与电解液充分接触改善锂离子的传输路径,同时由非晶碳和碳纳米管构成的三维桥联导电网络利于电子的快速传递,提高了材料大电流充放电能力和循环稳定性。复合后的LFS@C/CNTs的高倍率性能相比LFS@C明显提高, 当CNTs的掺量为4%,电压窗口为1.5~4.5 V,0.1C电流密度下放电比容量为182 mAh·g-1。在10C经70次循环后该材料的放电比容量能保持在117 mAh·g-1,是LFS@C放电比容量(55 mAh·g-1)的两倍。  相似文献   

17.
Polyaniline (PANI)-based composite materials containing 5 to 65 wt % of multi-wall carbon nanotubes (MCNT) are prepared. Their electrochemical characteristics are studied, in particular, the effect of the MCNT content in the composite on the composite and PANI specific capacitance. The increase in the composite capacitance, as well as the capacitance of the PANI being part of the composite, varies over the range from 5 to 25 wt %. This MCNT content is optimal for the preparing of a new MCNT-and PANI-based composite material. Over the above-given range, the increase in capacitance and the improving of conductivity are compromised at best. For a set of samples with varying MCNT content, the conductivity curve practically replicates the capacitance curve. The critical conductivity changes fall practically into the same range (5–30 wt %).  相似文献   

18.
采用循环伏安一步共聚法在碳纳米管修饰的铂基体上制备了电活性碳纳米管/聚苯胺/铁氰化镍(CNTs/PANI/NiHCF)复合膜.用傅立叶变换红外(FT-IR)光谱、X射线能谱仪(EDS)和扫描电镜(SEM)研究了复合膜组成及其表面形貌,并用循环伏安(CV)、恒电流充放电和电化学阻抗(EIS)等测试了复合膜的循环稳定性与电化学容量性能.研究表明:CNTs/PANI/NiHCF复合膜为三维多孔有序的网络状结构,PANI和NiHCF以纳米颗粒形式存在并沿CNTs均匀分布;在电流密度为2mA.cm-2时,CNTs/PANI/NiHCF复合膜的比容量高达262.28F.g-1,比能量为29.51Wh.kg-1,电流密度为10mA.cm-2时比功率可达10228.61W.kg-1;在2000次循环充放电过程中,复合膜的电容量仅衰减19.92%,电荷充放电效率一直保持在99%以上.CNTs/PANI/NiHCF有机-无机杂化膜具有良好的功率特性和快速充放电能力,是一种优异的超级电容器材料.  相似文献   

19.
王喆  朱赞赞  力虎林 《化学学报》2007,65(12):1149-1154
在溶有单壁碳纳米管(SWNTs)的苯胺溶液中, 通过电化学共聚合法成功制备了单壁碳纳米管(SWNT)/聚苯胺(PANI)复合膜. 用电沉积法将铂沉积到SWNT/PANI复合膜上. 样品的成分和形貌分别用XRD和SEM表征. 四探针和电化学交流阻抗的研究表明被PANI包裹的SWNTs整齐地排列在复合膜中, 从而提高了复合膜的电导率, 促进了电荷转移. 循环伏安(CV)说明Pt修饰的SWNT/PANI复合膜对于甲醛氧化具有良好的电催化活性及稳定性. 研究结果表明SWNT/PANI复合膜是一种非常好的催化剂载体, 有着广泛的应用前景.  相似文献   

20.
With an average diameter of 100-150 nm, composite nanotubes of polyaniline (PANI)/multiwalled carbon nanotubes (MWNTs) containing Fe3O4 nanoparticles (NPs) were synthesized by a two-step method. First, we synthesized monodispersed Fe3O4 NPs (d=17.6 nm, σ=1.92 nm) on the surface of MWNTs and then decorated the nanocomposites with a PANI layer via a self-assembly method. SEM and TEM images indicated that the obtained samples had the morphologies of nanotubes. The molecular structure and composition of MWNTs/Fe3O4 NPs/PANI nanotubes were characterized by Fourier transform infrared spectra (FTIR), energy dispersive X-ray spectrometry (EDX), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and Raman spectra. UV-vis spectra confirmed the existence of PANI and its response to acid and alkali. As a multifunctional material, the conductivity and magnetic properties of MWNTs/Fe3O4 NPs/PANI composites nanotubes were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号