首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
With well bioactive and nontoxic, hydroxyapatite (HAp) was employed to seal the nanopores of mesoporous silica (MCM-41) to realize the pH-responsive controlled release. First, MCM-41 was modified with cationic polymer, poly-(diallyldimethylammoniumchloride) (PA). And after the addition of Ca2+/PO4 3?, HAp precipitation can take place based on the cationic sites derived from PA. It is a simple and effective way to obtain HAp coating MCM-41 system (MHAs). The structure of the system was characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, N2 adsorption–desorption and so on. Metformin hydrochloride was used as the model drug, and the drug release performance and the release kinetics of the system were investigated in detail. Because of the degradation of HAp under acid condition, the drug loading MHAs showed a well pH-sensitive controlled release behavior. From above investigation, MHAs is a promising platform to construct a pH-responsive controlled drug delivery system, especially for some low pH tissues, such as inflammatory and tumor.  相似文献   

2.
Biodegradable poly(d,l-lactide-co-glycolide) (PLGA) and bioactive hydroxyapatite (HAp) are selected for the formation of a multifunctional system with the specific core-shell structure to be applied as a carrier of a drug. As a result, both components of PLGA/HAp core-shells are able to capture one part of the drug. Polymeric shells consisting of small nanospheres up to 20nm in size act as a matrix in which one part of the drug is dispersed. In the same time, ceramic cores are formed of rod-like hydroxyapatite particles at the surface of which another part of the drug is adsorbed onto the interface between the polymer and the ceramics. The content of the loaded drug, as well as the selected solvent/non-solvent system, have a crucial influence on the resulting PLGA/HAp morphology and, finally, unimodal distribution of core-shells is obtained. The redistribution of the drug between the organic and inorganic parts of the material is expected to provide an interesting contribution to the kinetics of the drug release resulting in non-typical two-step drug release.  相似文献   

3.
Aqueous microgels for the growth of hydroxyapatite nanocrystals   总被引:1,自引:0,他引:1  
In present article, we demonstrate that aqueous microgels can be used as containers for the in-situ synthesis of hydroxyapatite. The hydroxyapatite nanocrystals (HAp NCs) become integrated into microgels forming hybrid colloids. The HAp NCs loaded in the microgel can be varied over a broad range. The HAp NCs are localized within the microgel corona. The deposition of the inorganic nanocrystals decreases the colloidal stability of the microgels and leads to particle aggregation at high HAp NCs loading. Because of the strong interactions between HAp NCs and polymer chains, the swelling degree of microgels decreases, and temperature-sensitive properties disappear at high loading of the inorganic component. We demonstrate that hybrid colloids can be used as building blocks for the preparation of nanostructured films on solid substrates.  相似文献   

4.
This study focuses on exploiting the main component of traditional nickel metallurgical waste for use as a valuable material that can be applied in the removal of organic amines from water systems. Silicon compounds from metallurgic waste were converted into dissolvable sodium silicate by roasting the waste with alkali. Silica with adsorption capacity was combined with magnetic NiFe cores by the carbonation decomposition of purified silicate solution. The composite magnetic adsorbent was characterized, and its adsorption mechanism for organic amines was investigated. The effects of the initial trimethylamine concentration, contact time and temperature on the adsorption efficiency of the composite adsorbent towards trimethylamine were investigated. It was found that the adsorption fit the Freundlich mode well. The adsorption kinetics can be described by a pseudo-second-order kinetic model. The adsorption capacity reached 55.8 μg/mg at 293 K. The use of metallurgical waste to prepare the magnetic composite adsorbent has three advantages, which include benefiting the environment by reducing the amount of solid waste and costs associated with constructing and maintaining storage facilities, generating valuable products in an economical manner and conveniently recycling used adsorbents to avoid secondary pollution.  相似文献   

5.
A variety of fluoroalkyl end-capped oligomers were applied to the preparation of fluorinated oligomer/hydroxyapatite (HAp) composites (particle size: 38-356 nm), which exhibit a good dispersibility in water and traditional organic solvents. These fluoroalkyl end-capped oligomer/HAp composites were easily prepared by the reactions of disodium hydrogen phosphate and calcium chloride in the presence of self-assembled molecular aggregates formed by fluoroalkyl end-capped oligomers in aqueous solutions. In these fluorinated HAp composites thus obtained, fluoroalkyl end-capped acrylic acid oligomers and 2-methacryloyloxyethanesulfonic acid oligomer/HAp nanocomposites afforded transparent colorless solutions toward water; however, fluoroalkyl end-capped N,N-dimethylacrylamide oligomer and acryloylmorpholine oligomer were found to afford transparent colorless solutions with trace amounts of white-colored HAp precipitants under similar conditions. HAp could be encapsulated more effectively into fluorinated 2-methacryloyloxyethanesulfonic acid oligomeric aggregate cores to afford colloidal stable fluorinated oligomer/HAp composites, compared to that of fluorinated acrylic acid oligomers. These fluorinated oligomer/HAp composites were applied to the surface modification of glass and PVA to exhibit a good oleophobicity imparted by fluorine. HAp formation was newly observed on the modified polyethylene terephthalate film surface treated with fluorinated 2-methacryloyloxyethanesulfonic acid oligomers and acrylic acid oligomer/HAp composites by soaking these films into the simulated body fluid.  相似文献   

6.
A poly(vinyl alcohol) (PVA)/hydroxyapatite (HAp) composite monolithic scaffold is prepared via thermally impacted non-solvent induced phase separation method, successively followed by an alternate soaking process. The morphology of the resulting composite monolith is observed by scanning electron microscopy (SEM). The formation of hydroxyapatite is confirmed by X-ray diffraction, SEM in combination with energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy. The effects of soaking cycle and soaking time upon the formation of hydroxyapatite on the monolith surface are systematically investigated. With the increase of soaking cycle and soaking time, the amount of the formed hydroxyapatite increases. As the soaking cycle increases, the water uptake of the composite monolith decreases. The PVA/HAp composite monolith greatly has a promising application as scaffold of bone tissue engineering.  相似文献   

7.
In this study, a HAp/NaP nanocomposite was prepared by adding a synthesized nano-hydroxyapatite to zeolite NaP gel in the hydrothermal condition and used for the removal of lead(II) and cadmium(II) ions from aqueous solution. HAp/zeolite nanocomposite was then characterized by Fourier transform infrared spectroscopy, X-ray diffraction and Rietveld method, scanning electron microscope, energy-dispersive X-ray analysis, and surface area and thermal analyses. Results suggested that the nanocomposite crystals of HAp were dispersed onto the zeolite external surface and/or encapsulated within the zeolite channels and pores. The potential of the composite in adsorption of heavy metals was investigated by using batch experiment. The metal concentration in the equilibrium C e (mg/g) after adsorption with nanocomposite of HAp/NaP was analyzed using flame atomic adsorption spectrometry. The adsorption experiments were carried out at pH of 3–9. The influences of contact time, initial concentration, dose, and temperature on the adsorption of lead and cadmium ions were also studied. Results show that these nanocomposites have further adsorption related to NaP and HAp. They have great potential (about 95 %) for Pb(II) and Cd(II) adsorption at room temperature. The equilibrium process was described by Frendlich, Langmuir, Temkin, and Dubinin–Radushkevich (D-R) models. The kinetics data were successfully fitted by a pseudo-second-order model. The in vitro antibacterial activity of these composites was evaluated against Bacillus subtilis (as Gram-positive bacteria) and Pseudomonas aeruginosa (as Gram-negative bacteria) and compared with standard drugs that show inhibition on bacterial growth.  相似文献   

8.
A composite material that comprised metal–organic nanotubes (MONTs) and a sponge, Cu?MONTs?sponge, was synthesized by using a rapid and convenient surfactant‐assisted dip‐coating method and used as a high‐performance adsorbent for the solid‐phase extraction of pharmaceuticals and personal care products (PPCP) from environmental water samples. By adjusting the surfactant concentration, a composite material that contained metal–organic nanotubes and a macroporous 3D porous sponge was constructed. This modified sponge achieved outstanding reproducibility as an adsorbent, with the adsorption of trace or ultratrace amounts of contaminants. Moreover, this composite material was conveniently recycled and its extraction efficiency only decreased by 6.3–12.1 % after 30 adsorption/desorption cycles. The resulting composite exhibited excellent adsorption capacity for PPCPs, which was attributed to its unique porous structure, natural hydrophobicity, and electrostatic interactions between the metal–organic nanotubes and analyte molecules. This Cu?MONTs?sponge material is an ideal adsorbent for the extraction of trace amounts of PPCPs from environmental water samples.  相似文献   

9.
Hydroxyapatite (HAp) and hydroxyapatite/chitosan/β-cyclodextrin (HAp/CS/β-CD) nanoparticles were successfully prepared in the modified simulated body fluid (SBF) solution at the physiological conditions (pH 7.4, temperature?=?37 °C). CS/β-CD nanoparticles acted as templates for the synthesis of HAp/CS/β-CD nanoparticles to improve the nanoarchitecture of HAp and its crystallinity.The nanoparticles were characterized by FT-IR spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Kneading and coprecipitation methods were applied to prepare the inclusion complex involving β-CD and p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin), a photosensitizer for anti-cancer drugs. The 1:1 stoichiometric ratio of the formed inclusion complex was characterized by a formation constant of 7.216?×?102 mol?1 dm3 and analyzed by 1H NMR, FTIR, and UV–Vis. The p-THPP delivery release in vitro was in this order: HAp/CS/β-CD?<?CS/β-CD?<?<?HAp/β-CD?<?β-CD, hinting at a better controlled release by HAp/CS/β-CD nanoparticles.  相似文献   

10.
First-principles calculations are performed for Mg(2+) and Zn(2+) substitution in hydroxyapatite (HAp) and octacalcium phosphate (OCP), because the foreign ions are known to play an important role for bone formation. In order to study their possible location in the system of HAp in contact with the aqueous solution, OCP is considered as a structural model of the transition region between HAp and the solution. It is found that, when the foreign ions substitute for Ca sites, the surrounding oxygen ions undergo considerable inward relaxation, due to their smaller ionic sizes than Ca(2+), which results in the smaller coordination numbers with oxygen as compared with those of Ca in bulk HAp and OCP. From the calculated defect formation energies, it is likely that the substitutional foreign ions are quite difficult to dissolve into HAp whereas can be more easily incorporated in OCP. In particular, Zn(2+) can more favorably substitute for the specific Ca site of OCP, as compared to Mg(2+), which is attributed with covalent bond formation between Zn and the surrounding oxygen ions. It is thus considered that zinc may play its role to promote bone formation by being incorporated into the transition region between HAp and the surrounding solution.  相似文献   

11.
In the present paper, hydroxyapatite and structurally modified hydroxyapatite were investigated to establish the best material for nicotinic acid adsorption. Structurally modified hydroxyapatite wa prepared by adding sodium silicate in the reaction medium. The influence of silica concentration, presence of small amounts of metal ions, temperature and initial concentrations of nicotinic acid solutions on the adsorption capacity, were studied. Results indicated that structurally modified hydroxyapatite doped with copper adsorbed the highest amount of nicotinic acid. For this material the adsorption capacity was 0.232 mg nicotinic acid / g material, at an initial concentration of 10−4 M nicotinic acid. For all types of materials, best results were obtained at 15°C. The amount of nicotinic acid adsorbed increases with the decrease in temperature and with the increase in the initial concentration of nicotinic acid. Adsorption kinetics data were modeled using pseudo-first and pseudo-second order models while the interference due to diffusion was analyzed with intraparticle diffusion model. The results indicate that pseudo-second order model best describes the adsorption kinetics data, indicating the formation of chemical bonding.  相似文献   

12.
We present a novel conducting polypyrrole-based composite material, obtained by polymerization of pyrrole in the presence of iron(III) chloride on a cellulose substrate derived from the environmentally polluting Cladophora sp. algae. The material, which was doped with chloride ions, was molded into paper sheets and characterized using scanning and transmission electron microscopy, N 2 gas adsorption analysis, cyclic voltammetry, chronoamperometry and conductivity measurements at varying relative humidities. The specific surface area of the composite was found to be 57 m (2)/g and the fibrous structure of the Cladophora cellulose remained intact even after a 50 nm thick layer of polypyrrole had been coated on the cellulose fibers. The composite could be repeatedly used for electrochemically controlled extraction and desorption of chloride and an ion exchanging capacity of 370 C per g of composite was obtained as a result of the high surface area of the cellulose substrate. The influence of the oxidation and reduction potentials on the chloride ion exchange capacity and the nucleation of delocalized positive charges, forming conductive paths in the polypyrrole film, was also investigated. The creation of conductive paths during oxidation followed an effective medium rather than a percolative behavior, indicating that some conduction paths survive the polymer reduction steps. The present high surface area material should be well-suited for use in, e.g., electrochemically controlled ion exchange or separation devices, as well as sensors based on the fact that the material is compact, light, mechanically stable, and moldable into paper sheets.  相似文献   

13.
The adsorption of propylene and propane on zeolite NaX with and without a saturated (36 wt%) amount of CuCl have been investigated. The single component adsorption isotherms could be well described with a Dual-Site Langmuir model. The dispersion of CuCl results in a decrease of the maximum adsorption capacity of the zeolite for both components. For propylene a strong adsorption via π-complexation with CuCl is present, increasing the adsorption selectivity of the zeolite. The binary mixture (50:50) adsorption was determined via breakthrough/desorption experiments at 318, 358 and 408 K with a partial pressure of the two components between 0.8–54 kPa. For NaX the mixture loading could be well described with the IAS-theory and the single component isotherms, both qualitatively and quantitatively. A transition from an enthalpy controlled adsorption at lower loadings to an entropy affected adsorption at higher loadings was observed. The IAS-theory could only qualitatively describe the trends in the observed mixture adsorption for the CuCl/NaX adsorbent. The dispersion of CuCl in NaX results in a modest improvement of the adsorption selectivity for propylene over propane (from 3–7 to 15–30) but at the expense of a reduced capacity.  相似文献   

14.
A hydroxyapatite (HAp)/biopolymer composite scaffold was fabricated by mineralizing a crosslinked collagen/chitosan, which was pre‐mineralized with Ca2+ and phosphate salts, in simulated body fluid (SBF) for only 24 hr. A self‐organized structure similar to bone is expected. Microstructures of the crosslinked collagen/chitosan scaffold, the pre‐mineralized collagen–chitosan scaffold (CCS), and the mineralized collagen‐chitosan/HAp scaffolds (MCCHS) were characterized by scanning electron microscopy (SEM), revealing non‐alteration of the porous structure and formation of the HAp particles. X‐ray diffractometer (XRD) confirmed the crystalline structure of the HAp. Thermal gravimetric analysis found that more HAp particles were formed when the CCSs were pre‐mineralized in a higher concentration of Ca2+. Water‐uptake ratio of the crosslinked CCS was ~160, decreased to ~120 after incubating in Ca2+ solution, and further decreased to ~20 after mineralization. Mechanical strength of the CCS was improved significantly after the in situ mineralization too. The method introduced here may be potentially applied to obtain other biopolymer/HAp composite in a short period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This article focuses on providing a systematic review on various fundamental properties of composite based on poly(α-hydroxy esters) and hydroxyapatite (HAp) for application in bone tissue engineering. Poly(α-hydroxy esters), a well-known synthetic biopolymer has attracted considerable interest to be employed for synthesis of bone graft substitute material with HAp mainly due to its bioresorbability, variable biodegradation rate and melt-processibility. Such features are simultaneously attractive for both biomedical application and industrial-scale productions. Besides the main function of hydroxyapatite as bioactive ceramic filler in composite to induce new bone formation upon polymer bioresorption, HAp can also serve as reinforcement for matrix polymer by providing sufficient mechanical support for cell attachment. Moreover, HAp plays a significant role in determining other composite properties, such as resistance to ingress of body fluid, body temperature ageing, relaxation movement of polymer segment, and in vivo biodegradation. These properties constitute as the fundamental requirements in field of bone tissue regeneration which is desirable to be achieved by unique composite system based on poly(α-hydroxyesters) and HAp particles.  相似文献   

16.
树脂填充EVAL纤维吸附剂的制备及其吸附性能表征   总被引:3,自引:0,他引:3  
采用具有亲水性的乙烯-乙烯醇共聚物(EVAL)作为纤维吸附剂基质材料,粉末型Lewatit阳离子交换树脂CNP80ws为功能材料,采用可控相分离方法,制备了不同表面形态结构的树脂填充EVAL吸附剂.当使用外部液体调控相分离过程时,在纤维的表面形成了粗糙的开孔结构,并且随树脂的填充量提高纤维表面的粗糙度与开孔度有所提高.研究结果表明:树脂填充EVAL纤维吸附剂具有较大的吸附容量与较高的脱附率,其吸附容量不低于53.9mg BSA/g吸附剂(树脂填充量50%).  相似文献   

17.
A loading of ramipril in SBA-15 (Santa Barbara Amorphous) mesoporous material was studied. (SBA-15)-ramipril composite material was characterized by chemical analysis, infrared spectroscopy, powder X-ray diffraction, low temperature N2 adsorption–desorption at 77 K characterization techniques. Ramipril drug release processes from SBA-15 host to simulated body fluid (SBF), simulated gastric juice (SGJ), simulated intestinal fluid (SIF) were monitored in a simulated way and actions of the sustained release of (SBA-15)-ramipril was studied. The results showed that the loading amount of ramipril drug in SBA-15 was 90.30 mg/g. The cumulative sustained release rate of ramipril composite drug in SBF achieved 99.7 % after 27 h. When the sustained release of composite drug in SGJ was 8 h, the maximum cumulative sustained release ratio achieved 54.9 %. When the sustained release of composite drug was 9 h in SIF, the maximum cumulative sustained release ratio achieved 34.9 %. The method described in this study is suitable for carrying ramipril drug on SBA-15, and a new carrier to load ramipril drug was found. Meanwhile, the efficacy of ramipril drug and time efficacy could be improved.  相似文献   

18.
Hydroxyapatite (HAp) nanorods possess vast potential applications in various fields, and here HAp nanorods with high aspect ratio were synthesized via a convenient two‐stage precipitation‐hydrolysis process at 60°C under atmospheric pressure. The precursor of CaHPO4 at precipitation stage is well crystallized as nubby morphology with CTAB as surfactant, while CaHPO4 was dissolved and CTA+ stabilized the HAp nuclei during the hydrolysis stage. OH? ions were absorbed onto the active crystal surface, where Ca2+ and PO43+ reacted with OH? to make the nuclei grow into larger crystals, and highly crystalline HAp nanorods were obtained by Ostwald ripening. The loaded drug of IBU on the HAp crystals can be 100% released in 24 h. PVP modified HAp nanorods can increase the drug‐loading capacity and release drug faster than pure HAp nanorods. The results indicate that HAp nanorods modified with suitable surfactants are of great use in drug delivery system.  相似文献   

19.
Tanaka H  Nuno Y  Irie S  Shimomura S 《Talanta》1992,39(8):893-898
Adsorbed amounts of poly-l-lysine (pLys) and bromide ion on hydroxyapatite (HAp) from aqueous solutions of poly-l-lysine hydrobromide, and amounts of calcium and phosphate ions liberated concurrently from HAp during the adsorption of pLys were determined at 25 degrees . The pLys was adsorbed on HAp by the mechanism of ion-exchange between its amino groups and calcium ions of HAp. The released amount of calcium ion increased, therefore, with the adsorbed amount of pLys. On the other hand, the released amount of phosphate ion first decreased and then increased after attaining a minimum with the equilibrium concentration of pLys. The analysis using an equilibrium dialysis method revealed that the released phosphate ions were mainly in the bound state to the amino groups of pLys remaining in the solution, and that the concentrations of calcium and phosphate ions free from both HAp and pLys were restricted by each other under the law of the solubility product of HAp. The first decrease in the released amount of phosphate ion was concluded to be attributed primarily to the increase in the released amount of calcium ion because pLys remaining in the solution was little in this region. When sodium hydroxide was added to the solution, the adsorbed amount of pLys increased and then slightly decreased with the equilibrium pH of the solution due to the increase or decrease of the electrostatic attractive force between the adsorbate and the adsorbent. However, conformational change in pLys around pH 10 seemed to have little effect on the adsorption.  相似文献   

20.
This study reports the adsorption efficacy of hydroxyapatite (HAp) for removing Congo Red (CR) dye from aqueous solution. HAp was synthesized utilizing chicken eggshell as a precursor of Ca source. Solid state synthesis method was implemented which comprised calcination at 950 °C (E-HAp950). XRD analysis confirmed the formation of bi-phasic HAp with 15.5% of β-TCP. Elemental composition was evaluated by XPS and EDX analysis. FESEM analysis revealed the particles are of plate and spherical shaped also confirmed by the TEM images. DLS particle size, zeta potential, BET surface area and point of zero charge were also evaluated. Adsorption efficacy of E-HAp950 for removing CR was evaluated by batch adsorption experiment. Maximum adsorption capacity (qmax) was found to be 9.64 mgg−1 which was best explained by the non-linear fitting (R2 = 0.98) of Langmuir isotherm. Adsorption kinetics profusely followed pseudo second order kinetic model (R2 = 0.999) with qe (experimental) being very much closer to qe (calculative) for this model. Thus, hydroxyapatite prepared by utilizing eggshell waste through solid state method has the potential to remove toxic dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号