首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New syntheses of complexes containing the recently discovered (N(2))(3-) radical trianion have been developed by examining variations on the LnA(3)/M reductive system that delivers "LnA(2)" reactivity when Ln = scandium, yttrium, or a lanthanide, M = an alkali metal, and A = N(SiMe(3))(2) and C(5)R(5). The first examples of LnA(3)/M reduction of dinitrogen with aryloxide ligands (A = OC(6)R(5)) are reported: the combination of Dy(OAr)(3) (OAr = OC(6)H(3)(t)Bu(2)-2,6) with KC(8) under dinitrogen was found to produce both (N(2))(2-) and (N(2))(3-) products, [(ArO)(2)Dy(THF)(2)](2)(μ-η(2):η(2)-N(2)), 1, and [(ArO)(2)Dy(THF)](2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 2a, respectively. The range of metals that form (N(2))(3-) complexes with [N(SiMe(3))(2)](-) ancillary ligands has been expanded from Y to Lu, Er, and La. Ln[N(SiMe(3))(2)](3)/M reactions with M = Na as well as KC(8) are reported. Reduction of the isolated (N(2))(2-) complex {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2)), 3, with KC(8) forms the (N(2))(3-) complex, {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 4a, in high yield. The reverse transformation, the conversion of 4a to 3 can be accomplished cleanly with elemental Hg. The crown ether derivative {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(18-crown-6)(THF)(2)] was isolated from reduction of 3 with KC(8) in the presence of 18-crown-6 and found to be much less soluble in tetrahydrofuran (THF) than the [K(THF)(6)](+) salt, which facilitates its separation from 3. Evidence for ligand metalation in the Y[N(SiMe(3))(2)](3)/KC(8) reaction was obtained through the crystal structure of the metallacyclic complex {[(Me(3)Si)(2)N](2)Y[CH(2)Si(Me(2))NSiMe(3)]}[K(18-crown-6)(THF)(toluene)]. Density functional theory previously used only with reduced dinitrogen complexes of closed shell Sc(3+) and Y(3+) was extended to Lu(3+) as well as to open shell 4f(9) Dy(3+) complexes to allow the first comparison of bonding between these four metals.  相似文献   

2.
The [Z(2)Ln(THF)](2)(mu-eta(2)():eta(2)()-N(2)) complexes (Z = monoanionic ligand) generated by reduction of dinitrogen with trivalent lanthanide salts and alkali metals are strong reductants in their own right and provide another option in reductive lanthanide chemistry. Hence, lanthanide-based reduction chemistry can be effected in a diamagnetic trivalent system using the dinitrogen reduction product, [(C(5)Me(5))(2)(THF)La](2)(mu-eta(2)():eta(2)()-N(2)), 1, readily obtained from [(C(5)Me(5))(2)La][BPh(4)], KC(8), and N(2). Complex 1 reduces phenazine, cyclooctatetraene, anthracene, and azobenzene to form [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(12)H(8)N(2))], 2, (C(5)Me(5))La(C(8)H(8)), 3, [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(14)H(10))], 4, and [(C(5)Me(5))La(mu-eta(2)-(PhNNPh)(THF)](2), 5, respectively. Neither stilbene nor naphthalene are reduced by 1, but 1 reduces CO to make the ketene carboxylate complex {[(C(5)Me(5))(2)La](2)[mu-eta(4)-O(2)C-C=C=O](THF)}(2), 6, that contains CO-derived carbon atoms completely free of oxygen.  相似文献   

3.
The synthetically accessible borohydride complexes (C(5)Me(4)H)(2)Ln(THF)(BH(4)) and (C(5)Me(5))(2)Ln(THF)(BH(4)) (Ln = Sc, Y) were examined as precursors alternative to the heavily-used tetraphenylborate analogs, [(C(5)Me(4)H)(2)Ln][BPh(4)] and [(C(5)Me(5))(2)Ln][BPh(4)], employed in LnA(2)A'/M reduction reactions (A = anion; M = alkali metal) that generate "LnA(2)" reactivity and form reduced dinitrogen complexes [(C(5)R(5))(2)(THF)(x)Ln](2)(μ-η(2):η(2)-N(2)) (x = 0, 1). The crystal structures of the yttrium borohydrides, (C(5)Me(4)H)(2)Y(THF)(μ-H)(3)BH, 1, and (C(5)Me(5))(2)Y(THF)(μ-H)(2)BH(2), 2, were determined for comparison with those of the yttrium tetraphenylborates, [(C(5)Me(4)H)(2)Y][(μ-Ph)(2)BPh(2)], 3, and [(C(5)Me(5))(2)Y][(μ-Ph)(2)BPh(2)], 4. The complex (C(5)Me(4)H)(2)Sc(μ-H)(2)BH(2), 5, was synthesized and structurally characterized for comparison with (C(5)Me(5))(2)Sc(μ-H)(2)BH(2), 6, [(C(5)Me(4)H)(2)Sc][(μ-Ph)BPh(3)], 7, and [(C(5)Me(5))(2)Sc][(μ-Ph)BPh(3)], 8. Structural information was also obtained on the borohydride derivatives, (C(5)Me(4)H)(2)Sc(μ-H)(2)BC(8)H(14), 9, and (C(5)Me(5))(2)Sc(μ-H)(2)BC(8)H(14), 10, obtained from 9-borabicyclo(3.3.1)nonane (9-BBN) and (C(5)Me(4)R)(2)Sc(η(3)-C(3)H(5)), where R = H, 11; Me, 12. The preference of the metals for borohydride over tetraphenylborate binding was shown by the facile displacement of (BPh(4))(1-) in 3, 4, 7, and 8 by (BH(4))(1-) to make the respective borohydride complexes 1, 2, 5, and 6. These results are consistent with the fact that the borohydrides are not as useful as precursors in A(2)LnA'/M reductions of N(2). An unusual structural isomer of [(C(5)Me(4)H)(2)Sc](2)(μ-η(2):η(2)-N(2)), 13', was isolated from this study that shows the variations in ligand orientation that can occur in the solid state.  相似文献   

4.
Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.  相似文献   

5.
The La(2+) complex [K(18-crown-6)(OEt(2))][Cp″(3)La] (1) [Cp″ = C(5)H(3)(SiMe(3))(2)-1,3], can be synthesized under N(2), but in the presence of KC(5)Me(5), 1 reduces N(2) to the (N═N)(2-) product [(C(5)Me(5))(2)(THF)La](2)(μ-η(2):η(2)-N(2)). This suggests a dichotomy in terms of ligands that optimize isolation of reduced dinitrogen complexes versus isolation of divalent complexes of the rare earths. To determine whether the first crystalline molecular Y(2+) complex could be isolated using this logic, Cp'(3)Y (2) (Cp' = C(5)H(4)SiMe(3)) was synthesized from YCl(3) and KCp' and reduced with KC(8) in the presence of 18-crown-6 in Et(2)O at -45 °C under argon. EPR evidence was consistent with Y(2+) and crystallization provided the first structurally characterizable molecular Y(2+) complex, dark-maroon-purple [(18-crown-6)K][Cp'(3)Y] (3).  相似文献   

6.
The reactivity of the tetraphenylborate salts of the rare earth metallocene cations [(C(5)Me(5))(2)Ln][(μ-Ph)(2)BPh(2)] (Ln = Y, 1; Sm, 2) has been investigated with substrates that undergo reduction with f element complexes to probe metal-substrate interactions prior to reduction. Results with NaN(3), 1-adamantyl azide, acetone, benzophenone, phenanthroline, pyridine, azobenzene, and phenazine are described. Not only were coordination complexes isolated, but substrate reduction by (BPh(4))(-) was also observed. Complex 1 reacts with NaN(3) to form the azide [(C(5)Me(5))(2)YN(3)](x), 3, which crystallizes as [(C(5)Me(5))(2)Y(μ-N(3))](3), 4, when obtained from 1 and 1-adamantyl azide. The samarium analogue [(C(5)Me(5))(2)SmN(3)](x), 5, can be produced similarly from 2 and NaN(3) and crystallized from MeCN as [(C(5)Me(5))(2)Sm(NCMe)(μ-N(3))](3), 6, and {[(C(5)Me(5))(2)Sm(μ-N(3))][(C(5)Me(5))(2)Sm(NCMe)(μ-N(3))]}(n), 7. Complexes 1 and 2 react with stoichiometric amounts of acetone and benzophenone to form the ketone adducts [(C(5)Me(5))(2)Ln(OCMe(2))(2)][BPh(4)] (Ln = Y, 8; Sm, 9) and [(C(5)Me(5))(2)Ln(OCPh(2))(2)][BPh(4)] (Ln = Y, 10; Sm, 11), respectively. Phenanthroline (phen) coordinates to 1 to form [(C(5)Me(5))(2)Y(phen)][BPh(4)], 12. Complexes 1 and 2 react with pyridine (py) to form [(C(5)Me(5))(2)Ln(py)(2)][BPh(4)], (Ln = Y, 13; Sm, 14). Complexes 3, 8, 10, and 12 can also be made from the solvated cation [(C(5)Me(5))(2)Y(THF)(2)][BPh(4)]. The reaction of 1 with PhNNPh yields the diamagnetic adduct [(C(5)Me(5))(2)Y(PhNNPh)][BPh(4)], 15, which transforms in benzene to the radical anion complex (C(5)Me(5))(2)Y(PhNNPh), 16, via a one electron reduction by (BPh(4))(-). Complex 1 similarly reacts with phenazine (phz) to produce the first rare earth phenazine radical anion complex {[(C(5)Me(5))(2)Y](2)(phz)}{BPh(4)}, 17. Further reduction of phenazine by (BPh(4))(-) in 17 yields [(C(5)Me(5))(2)Y](2)(phz), 18, which contains the common (phz)(2-) dianion. The reduction of fluorenone by (BPh(4))(-) is also reported.  相似文献   

7.
Zhu X  Wang S  Zhou S  Wei Y  Zhang L  Wang F  Feng Z  Guo L  Mu X 《Inorganic chemistry》2012,51(13):7134-7143
Two series of new lanthanide amido complexes supported by bis(indolyl) ligands with amino-coordinate-lithium as a bridge were synthesized and characterized. The interactions of [(Me(3)Si)(2)N](3)Ln(III)(μ-Cl)Li(THF)(3) with 2 equiv of 3-(CyNHCH(2))C(8)H(5)NH in toluene produced the amino-coordinate-lithium bridged bis(indolyl) lanthanide amides [μ-{[η(1):η(1):η(1):η(1)-3-(CyNHCH(2))Ind](2)Li}Ln[N(SiMe(3))(2)](2)] (Cy = cyclohexyl, Ind = Indolyl, Ln = Sm (1), Eu (2), Dy (3), Yb (4)) in good yields. Treatment of [μ-{[η(1):η(1):η(1):η(1)-3-(CyNHCH(2))Ind](2)Li}Ln[N(SiMe(3))(2)](2)] with THF gave new lanthanide amido complexes [μ-{[η(1):η(1)-3-(CyNHCH(2))Ind](2)Li(THF)}Ln[N(SiMe(3))(2)](2)] (Ln = Eu (5), Dy (6), Yb (7)), which can be transferred to amido complexes 2, 3, and 4 by reflux the corresponding complexes in toluene. Thus, two series of rare-earth-metal amides could be reciprocally transformed easily by merely changing the solvent in the reactions. All new complexes 1-7 are fully characterized including X-ray structural determination. The catalytic activities of these new lanthanide amido complexes for hydrophosphonylation of both aromatic and aliphatic aldehydes and various substituted aldimines were explored. The results indicated that these complexes displayed a high catalytic activity for the C-P bond formation with employment of low catalyst loadings (0.1 mol?% for aldehydes and 1 mol?% for aldimines) under mild conditions. Thus, it provides a convenient way to prepare both α-hydroxy and α-amino phosphonates.  相似文献   

8.
Simple silylamine elimination reactions of calix[4]-pyrrole [R(2)C(C(4)H(2)NH)](4) (R = Me (1), {-(CH(2))(5)-}(0.5) (2)) with 2 equiv. of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) (Ln = Nd, Sm, Dy) in reflux toluene, afforded the novel dinuclear alkali metal-free trivalent lanthanide amido complexes (η(5):η(1):η(5):η(1)-R(8)-calix[4]-pyrrolyl){LnN(SiMe(3))(2)}(2) (R = Me, Ln = Nd (3), Sm (4), Dy (5); R = {-(CH(2))(5)-}(0.5), Ln = Nd (6), Sm(7)). The complexes were fully characterized by elemental analyses, spectroscopic analyses and single-crystal X-ray analyses. X-ray diffraction studies showed that each lanthanide metal was supported by bispyrrolyl anions in an η(5) fashion and along with three nitrogen atoms from N(SiMe(3))(2) and two other pyrroyl rings in η(1) modes formed the novel bent-sandwiched lanthanide amido bridged trivalent lanthanide amido complexes, similar to ansa-cyclopentadienyl ligand-supported lanthanide amides with respect to each metal center. The catalytic activities of these organolanthanide complexes as single component l-lactide polymerization catalysts were studied.  相似文献   

9.
The Ln[N(SiMe(3))(2)](3)/K dinitrogen reduction system, which mimicks the reactions of the highly reducing divalent ions Tm(II), Dy(II), and Nd(II), has been explored with the entire lanthanide series and uranium to examine its generality and to correlate the observed reactivity with accessibility of divalent oxidation states. The Ln[N(SiMe(3))(2)](3)/K reduction of dinitrogen provides access from readily available starting materials to the formerly rare class of M(2)(mu-eta(2):eta(2)-N(2)) complexes, [[(Me(3)Si)(2)N](2)(THF)Ln](2)(mu-eta(2):eta(2)-N(2)), 1, that had previously been made only from TmI(2), DyI(2), and NdI(2) in the presence of KN(SiMe(3))(2). This LnZ(3)/alkali metal reduction system provides crystallographically characterizable examples of 1 for Nd, Gd, Tb, Dy, Ho, Er, Y, Tm, and Lu. Sodium can be used as the alkali metal as well as potassium. These compounds have NN distances in the 1.258(3) to 1.318(5) A range consistent with formation of an (N=N)(2)(-) moiety. Isolation of 1 with this selection of metals demonstrates that the Ln[N(SiMe(3))(2)](3)/alkali metal reaction can mimic divalent lanthanide reduction chemistry with metals that have calculated Ln(III)/Ln(II) reduction potentials ranging from -2.3 to -3.9 V vs NHE. In the case of Ln = Sm, which has an analogous Ln(III)/Ln(II) potential of -1.55 V, reduction to the stable divalent tris(amide) complex, K[Sm[N(SiMe(3))(2)](3)], is observed instead of dinitrogen reduction. When the metal is La, Ce, Pr, or U, the first crystallographically characterized examples of the tetrakis[bis(trimethylsilyl)amide] anions, [M[N(SiMe(3))(2)](4)](-), are isolated as THF-solvated potassium or sodium salts. The implications of the LnZ(3)/alkali metal reduction chemistry on the mechanism of dinitrogen reduction and on reductive lanthanide chemistry in general are discussed.  相似文献   

10.
The tethered olefin cyclopentadienyl ligand, [(C(5)Me(4))SiMe(2)(CH(2)CH=CH(2))](-), forms unsolvated metallocenes, [(C(5)Me(4))SiMe(2)(CH(2)CH=CH(2))](2)Ln (Ln = Sm, 1; Eu, 2; Yb, 3), from [(C(5)Me(4))SiMe(2)(CH(2)CH=CH(2))]K and LnI(2)(THF)(2) in good yield. Each complex in the solid state has both tethered olefins oriented toward the Ln metal center with the Ln-C(terminal alkene carbon) distances 0.2-0.3 A shorter than the Ln-C(internal alkene carbon) distances. The olefinic C-C bond distances in 2 and 3, 1.328(4) and 1.328(5) A, respectively, are normal. Like its permethyl analogue, (C(5)Me(5))(2)Sm(THF)(2), complex 1 reductively couples CO(2) to form the oxalate-bridged dimer [[(C(5)Me(4))SiMe(2)(CH(2)CH=CH(2))](2)Sm](2)(mu-eta(2):eta(2)-O(2)CCO(2)), 4, in which the tethered olefins are noninteracting substituents. Complex 1 reacts with AgBPh(4) to form an unsolvated cation that has the option of coordinating [BPh(4)](-) or a pendant olefin, a competition common in olefin polymerization catalysis. The structure of [[(C(5)Me(4))SiMe(2)(CH(2)CH=CH(2))](2)Sm][BPh(4)], 5, shows that both pendant olefins are located near samarium rather than the [BPh(4)](-) counterion.  相似文献   

11.
Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a.  相似文献   

12.
The sterically crowded (C(5)Me(5))(3)U complex reacts with KC(8) or K/(18-crown-6) in benzene to form [(C(5)Me(5))(2)U](2)(mu-eta(6):eta(6)-C(6)H(6)), 1, and KC(5)Me(5). These reactions suggested that (C(5)Me(5))(3)U could be susceptible to (C(5)Me(5))(1-) substitution by benzene anions via ionic salt metathesis. To test this idea in the synthesis of a more conventional product, (C(5)Me(5))(3)U was treated with KN(SiMe(3))(2) to form (C(5)Me(5))(2)U[N(SiMe(3))(2)] and KC(5)Me(5). 1 has long U-C(C(5)Me(5)) bond distances comparable to (C(5)Me(5))(3)U, and it too is susceptible to (C(5)Me(5))(1-) substitution via ionic metathesis: 1 reacts with KN(SiMe(3))(2) to make its amide-substituted analogue [[(Me(3)Si)(2)N](C(5)Me(5))U](2)(mu-eta(6):eta(6)-C(6)H(6)), 2. Complexes 1 and 2 have nonplanar C(6)H(6)-derived ligands sandwiched between the two uranium ions. 1 and 2 were examined by reactivity studies, electronic absorption spectroscopy, and density functional theory calculations. [(C(5)Me(5))(2)U](2)(mu-eta(6):eta(6)-C(6)H(6)) functions as a six-electron reductant in its reaction with 3 equiv of cyclooctatetraene to form [(C(5)Me(5))(C(8)H(8))U](2)(mu-eta(3):eta(3)-C(8)H(8)), (C(5)Me(5))(2), and benzene. This multielectron transformation can be formally attributed to three different sources: two electrons from two U(III) centers, two electrons from sterically induced reduction by two (C(5)Me(5))(1-) ligands, and two electrons from a bridging (C(6)H(6))(2-) moiety.  相似文献   

13.
The coordination chemistry of the 2,3-dimethylindolide anion (DMI), (Me(2)C(8)H(4)N)(-), with potassium, yttrium, and samarium ions is described. In the potassium salt [K(DMI)(THF)](n), 1, prepared from Me(2)C(8)H(4)NH and KH in THF, the dimethylindole anion binds and bridges potassium ions in three different binding modes, namely eta(1), eta(3), and eta(5), to form a two-dimensional extended structure. In the dimethoxyethane (DME) adduct [K(DMI)(DME)(2)](2), 2, prepared by crystallizing a sample of 1 from DME, DMI exists as a mu-eta(1):eta(1) ligand. Compound 1 reacts with SmI(2)(THF)(4) in THF to form the distorted octahedral complex trans-(DMI)(2)Sm(THF)(4), 3, in which the dimethyindolide anions are bound in the eta(1) mode to samarium. Reaction of 2,3-dimethylindole with Y(CH(2)SiMe(3))(3)(THF)(2) afforded the amide complex (DMI)(3)Y(THF)(2), 4, in which the dimethylindolide anions are also bound in the eta(1) mode to yttrium. Compound 1 also reacts with (C(5)Me(5))(2)LnCl(2)K(THF)(2) (Ln = Sm, Y) to form unsolvated amide complexes (C(5)Me(5))(2)Ln(DMI) (Ln = Sm, 5; Y, 6), in which DMI attaches primarily through nitrogen, although the edge of the arene ring is oriented toward the metals at long distances.  相似文献   

14.
Yang D  Ding Y  Wu H  Zheng W 《Inorganic chemistry》2011,50(16):7698-7706
Several of alkaline-earth-metal complexes [(η(2):η(2):μ(N):μ(N)-Li)(+)](2)[{η(2)-Me(2)Si(DippN)(2)}(2)Mg](2-) (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Ca·3THF] (5), [η(2)(N,N)-Me(2)Si(DippN)(2)Sr·THF] (6), and [η(2)(N,N)-Me(2)Si(DippN)(2)Ba·4THF] (7) of a bulky bis(amido)silane ligand were readily prepared by the metathesis reaction of alkali-metal bis(amido)silane [Me(2)Si(DippNLi)(2)] (Dipp = 2,6-i-Pr(2)C(6)H(3)) and alkaline-earth-metal halides MX(2) (M = Mg, X = Br; M = Ca, Sr, Ba, X = I). Alternatively, compounds 5-7 were synthesized either by transamination of M[N(SiMe(3))(2)](2)·2THF (M = Ca, Sr, Ba) and [Me(2)Si(DippNH)(2)] or by transmetalation of Sn[N(SiMe(3))(2)](2), [Me(2)Si(DippNH)(2)], and metallic calcium, strontium, and barium in situ. The metathesis reaction of dilithium bis(amido)silane [Me(2)Si(DippNLi)(2)] and magnesium bromide in the presence of oxygen afforded, however, an unusual lithium oxo polyhedral complex {[(DippN(Me(2)Si)(2))(μ-O)(Me(2)Si)](2)(μ-Br)(2)[(μ(3)-Li)·THF](4)(μ(4)-O)(4)(μ(3)-Li)(2)} (8) with a square-basket-shaped core Li(6)Br(2)O(4) bearing a bis(aminolato)silane ligand. All complexes were characterized using (1)H, (13)C, and (7)Li NMR and IR spectroscopy, in addition to X-ray crystallography.  相似文献   

15.
To compare the ligand-based reduction chemistry of (EPh)(-) ligands in a metallocene environment to the sterically induced reduction chemistry of the (C(5)Me(5))(-) ligands in (C(5)Me(5))(3)Sm, (C(5)Me(5))(2)Sm(EPh) (E = S, Se, Te) complexes were synthesized and treated with substrates reduced by (C(5)Me(5))(3)Sm: cyclooctatetraene; azobenzene; phenazine. Reactions of PhEEPh with (C(5)Me(5))(2)Sm(THF)(2) and (C(5)Me(5))(2)Sm produced THF-solvated monometallic complexes, (C(5)Me(5))(2)Sm(EPh)(THF), and their unsolvated dimeric analogues, [(C(5)Me(5))(2)Sm(mu-EPh)](2), respectively. Both sets of the paramagnetic benzene chalcogenolate complexes were definitively identified by X-crystallography and form homologous series. Only the (TePh)(-) complexes show reduction reactivity and only upon heating to 65 degrees C.  相似文献   

16.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

17.
A series of rare-earth-metal-hydrocarbyl complexes bearing N-type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH(2)SiMe(3))(3)(thf)(2)] with equimolar amount of the electron-donating aminophenyl-Cp ligand C(5)Me(4)H-C(6)H(4)-o-NMe(2) afforded the corresponding binuclear monoalkyl complex [({C(5)Me(4)-C(6)H(4)-o-NMe(μ-CH(2))}Y{CH(2)SiMe(3)})(2)] (1a) via alkyl abstraction and C-H activation of the NMe(2) group. The lutetium bis(allyl) complex [(C(5)Me(4)-C(6)H(4)-o-NMe(2))Lu(η(3)-C(3)H(5))(2)] (2b), which contained an electron-donating aminophenyl-Cp ligand, was isolated from the sequential metathesis reactions of LuCl(3) with (C(5)Me(4)-C(6)H(4)-o-NMe(2))Li (1 equiv) and C(3)H(5)MgCl (2 equiv). Following a similar procedure, the yttrium- and scandium-bis(allyl) complexes, [(C(5)Me(4)-C(5)H(4)N)Ln(η(3)-C(3)H(5))(2)] (Ln=Y (3a), Sc (3b)), which also contained electron-withdrawing pyridyl-Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl-Flu ligand (C(13)H(9)-C(5)H(4)N) by [Ln(CH(2)SiMe(3))(3)(thf)(2)] generated the rare-earth-metal-dialkyl complexes, [(η(3)-C(13)H(8)-C(5)H(4)N)Ln(CH(2)SiMe(3))(2)(thf)] (Ln=Y (4a), Sc (4b), Lu (4c)), in which an unusual asymmetric η(3)-allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium-trisalkyl complex [Y(CH(2)C(6)H(4)-o-NMe(2))(3)], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η(3)-C(13)H(8)-C(5)H(4)N)Y(CH(2)C(6)H(4)-o-NMe(2))(2)] (5). Complexes 1-5 were fully characterized by (1)H and (13)C NMR and X-ray spectroscopy, and by elemental analysis. In the presence of both [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3), the electron-donating aminophenyl-Cp-based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph(3)C][B(C(6)F(5))(4)] only, the electron-withdrawing pyridyl-Cp-based complexes 3, in particular scandium complex 3b, exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99%) polystyrene, whereas their bulky pyridyl-Flu analogues (4 and 5) in combination with [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3) displayed much-lower activity to afford syndiotactic-enriched polystyrene.  相似文献   

18.
Treatment of [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) with the imido complexes [Ti(NAr)Cl(2)(py)(3)] (Ar=2,4,6-C(6)H(2)Me(3)) and [Ti(NtBu)Cl(2)(py)(3)] in toluene affords the single azatitanocubanes [[Cl(2)(ArN)Ti]( micro(3)-NH)(3)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (2.C(7)H(8)) and [[Cl(2)Ti](micro(3)-N)(2)(micro(3)-NH)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (3), respectively. Similar reactions of complex 1 with the niobium and tantalum imido derivatives [[M(NtBu)(NHtBu)Cl(2)(NH(2)tBu)](2)] (M=Nb, Ta) in toluene give the single azaheterometallocubanes [[Cl(2)(tBuN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (M=Nb (4), Ta (5)), both complexes react with 2,4,6-trimethylaniline to yield the analogous species [[Cl(2)(ArN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (Ar=2,4,6-C(6)H(2)Me(3), M=Nb (6.C(7)H(8)), Ta (7.C(7)H(8))). Also the azaheterodicubanes [M[micro(3)-N)(2)(micro(3)-NH)](2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2C(7)H(8) [M=Ti (8.2C(7)H(8)), Zr (9.2C(7)H(8))], and [M[(micro(3)-N)(5)(micro(3)-NH)][Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2 C(7)H(8) (Nb (10.2C(7)H(8)), Ta (11.2C(7)H(8))) were prepared from 1 and the homoleptic dimethylamido complex [M(NMe(2))(x)] (x=4, M=Ti, Zr; x=5, M=Nb, Ta) in toluene at 150 degrees C. X-ray crystal structure determinations were performed for 6 and 10, which revealed a cube- and double-cube-type core, respectively. For complexes 2 and 4-7 we observed and studied by DNMR a rotation or trigonal-twist of the organometallic ligands [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) and [(micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]](1-). Density functional theory calculations were carried out on model complexes of 2, 3, and 8 to establish and understand their structures.  相似文献   

19.
Zhu T  Wambach TC  Fryzuk MD 《Inorganic chemistry》2011,50(21):11212-11221
The synthesis and characterization of two 1,2-cyclopentyl-bridged diiminophosphine proligands, (CY5)[NPN](DMP)H(2) (CY5 = cyclopentylidene; DMP = 2,6-Me(2)C(6)H(3)) and (CY5)[NPN](DIPP)H(2) (DIPP = 2,6-(i)Pr(2)C(6)H(3)), are presented, and tautomerization to the corresponding 1,2-cyclopentenyl-bridged enamineimine phosphine precursors is reported. These two new proligands are obtained by deprotonation of N-DMP- or N-DIPP-cyclopentylideneimine (N-DMP, 2,6-dimethylphenyl; N-DIPP, 2,6-diisopropylphenyl) and the subsequent addition of 0.5 equiv of dichlorophenylphosphine. Each ligand precursor exists as a mixture of isomers that consist of the diimine, enamineimine, and dienamine tautomers and corresponding stereoisomers, each of which could be identified. The bis(dimethylamido)zirconium complexes (CY5)[NPN](DMP)Zr(NMe(2))(2) and (CY5)[NPN](DIPP)Zr(NMe(2))(2) were prepared directly from the neutral proligands and Zr(NMe(2))(4) via protonolysis. Exchange of the dimethylamido ligands in the latter complexes for chlorides and iodides takes place upon reaction with excess Me(3)SiCl and Me(3)SiI, respectively. A dinuclear zirconium-dinitrogen complex, {(CY5)[NPN](DMP)Zr(THF)}(2)(μ-η(2):η(2)-N(2)), was obtained via KC(8) reduction of (CY5)[NPN](DMP)ZrCl(2) under 4 atm of N(2). On the basis of single-crystal X-ray analysis, N(2) has been reduced to a side-on-bound hydrazido (μ-η(2):η(2)-N(2)(4-)) unit. This dinitrogen complex is thermally unstable and decomposes in solution.  相似文献   

20.
The solution structures of the metallocenium homogeneous polymerization catalyst ion-pairs [Cp(2)ZrMe](+)[MeB(C(6)F(5))(3)](-) (1), [(1,2-Me(2)Cp)(2)ZrMe](+)[MeB(C(6)F(5))(3)](-) (2), [(Me(2)SiCp(2))ZrMe](+)[MeB(C(6)F(5))(3)](-) (3), [Me(2)C(Fluorenyl)(Cp)ZrMe](+)[FPBA](-) (FPBA = tris(2,2',2' '-nonafluorobiphenyl)fluoroaluminate) (4), [rac-Et(Indenyl)(2)ZrMe](+)[FPBA](-) (5), [(Me(5)Cp)(2)ThMe](+)[B(C(6)F(5))(4)](-) (6), [(Me(2)SiCp(2))Zr(Me)(THF)](+)[MeB(C(6)F(5))(3)](-) (7), [(Me(2)SiCp(2))Zr(Me)(PPh(3))](+)[MeB(C(6)F(5))(3)](-) (8), [(Me(2)SiCp(2))Zr(Me)(THF)](+)[B(C(6)F(5))(4)](-) (9), [(Me(2)Si(Me(4)Cp)(t-BuN)Zr(Me)(solvent)](+)[B(C(6)F(5))(4)](-) (solvent = benzene, toluene) (10), [(Cp(2)ZrMe)(2)(mu-Me)](+)[MePBB](-) (PBB = tris(2,2',2"-nonafluorobiphenyl)borane) (11), and [(Cp(2)Zr)(2)(mu-CH(2))(mu-Me)](+)[MePBB](-) (12), having the counteranion in the inner (1, 3, 4, 5, and 6) or outer (7, 8, 9, 10, 11, and 12) coordination sphere, have been investigated for the first time in solvents with low relative permittivity such as benzene or toluene by (1)H NOESY and (1)H,(19)F HOESY NMR spectroscopy. It is found that the average interionic solution structures of the inner sphere contact ion-pairs are similar to those in the solid state with the anion B-Me (1, 3) or Al-F (5) vectors oriented toward the free zirconium coordination site. The HOESY spectrum of complex 6 is in agreement with the reported solid-state structure. In contrast, in outer sphere contact ion-pairs 7, 8, 9, and 10, the anion is located far from the Zr-Me(+) moiety and much nearer to the Me(2)Si bridge than in 3. The interionic structure of 8 is concentration-dependent, and for concentrations greater than 2 mM, a loss of structural localization is observed. PGSE NMR measurements as a function of concentration (0.1-5.0 mM) indicate that the tendency to form aggregates of nuclearity higher than simple ion-pairs is dependent on whether the anion is in the inner or outer coordination sphere of the metallocenium cation. Complexes 2, 3, 4, 5, and 6 show no evidence of aggregation up to 5 mM (well above concentrations typically used in catalysis) or at the limit of saturated solutions (complexes 3 and 6), while concentration-dependent behavior is observed for complexes 7, 8, 10, and 11. These outer sphere ion-pairs begin to exhibit significant evidence for ion-quadruples in solutions having concentrations greater than 0.5 mM with the tendency to aggregate being a function of metal ligation and anion structure. Above 2 mM, compound 8 exists as higher aggregates that are probably responsible for the loss of interionic structural specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号