首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discontinuous molecular dynamics simulations are performed on surfactant (HmTn)/solvent systems modeled as a mixture of single-sphere solvent molecules and freely jointed surfactant chains composed of m slightly solvent-philic head spheres (H) and n solvent-philic tail spheres (T), all of the same size. We use a square-well potential to account for the head-head, head-solvent, tail-tail, and tail-solvent interactions and a hard-sphere potential for the head-tail and solvent-solvent interactions. We first simulate homopolymer/supercritical CO2 (scCO2) systems to establish the appropriate interaction parameters for a surfactant/scCO2 system. Next, we simulate surfactant/scCO2 systems and explore the effect of the surfactant volume fraction, packing fraction, and temperature on the phase behavior. The transition from the two-phase region to the one-phase region is located by monitoring the contrast structure factor of the equilibrated surfactant/scCO2 system, and the micelle to unimer transition is located by monitoring the aggregate size distribution of the equilibrated surfactant/scCO2 system. We find a two-phase region, a micelle phase, and a unimer phase with increasing packing fraction at fixed temperature or with increasing temperature at fixed packing fraction. The phase diagram for the surfactant/scCO2 system in the surfactant volume fraction-packing fraction plane and the density dependence of the critical micelle concentration are in qualitative agreement with experimental observations. The phase behavior of a surfactant/scCO2 system can be directly related to the solubilities of the corresponding homopolymers that serve as the head and tail blocks for the surfactant. The influence of surfactant structure (head and tail lengths) on the phase transitions is explored.  相似文献   

2.
3.
We used fluorescence quenching, vibronic band ratios and excimer fluorescence techniques to quantify the statistics of pyrene solubilization in nonionic octaethylene glycol monododecyl ether (C12E8) micelles. Using a two-phase model (aqueous and micellar pseudophases) to interpret fluorescence results, we found that all three of these experimental methods provide consistent information about pyrene partitioning between aqueous and micellar pseudophases. From dynamic quenching experiments we determined the pyrene partition coefficient and the average number of pyrene molecules solubilized per micelle over a range of surfactant concentrations. The pyrene partition coefficient increases with increasing surfactant concentration. We confirmed the partitioning results by excimer fluorescence measurements. Quenching results indicate that pyrene is accessible to Cu2+ quenchers even in the limit of high surfactant concentration where solubilized pyrene is in the infinite dilution limit in the micellar pseudophase. This suggests that solubilized pyrene resides in the micellar palisade layer. We determined the maximum number of pyrene solubilizates allowed per micelle (micellar solubilization capacity) by applying a three-phase model to fluorescence experiments conducted in the presence of solid phase pyrene. The estimated maximum capacity is 6 pyrene molecules per micelle. The three phase partitioning model successfully predicted the excimer fluorescence in the presence of solid pyrene.  相似文献   

4.
The micellization behavior of a series of model surfactants, all with four head and tail groups (H4T4) but with different degrees of chain stiffness, was studied using grand canonical Monte Carlo simulations on a cubic lattice. The critical micelle concentration, micellar size, and thermodynamics of micellization were examined. In all cases investigated, the critical micelle concentration was found to increase with increasing temperature as observed for nonionic surfactants in apolar or slightly polar solvents. At a fixed reduced temperature and increasing chain stiffness, in agreement with previous observations, it was found that the critical micelle concentration decreased and the average micelle size increased. This behavior is qualitatively consistent with that experimentally observed when comparing hydrogenated and homologous fluorinated surfactants. Thermodynamic considerations based on the analysis of the temperature dependence of the critical micelle concentration indicated that both effects could be interpreted as arising from an increased number of heterocontacts between hydrophobic portions of stiff surfactants and a lower entropic cost on packing rigid chains. Structural analysis that was also based on considering the inner micellar radial dependence of the surfactant head and tail site fraction distributions suggested that, on stiffening the molecular backbone, the resulting micellar aggregates grew, without appreciable deviations from spherical symmetry. Stiffer surfactants led to a slightly denser micellar core because of better packing.  相似文献   

5.
We determine the free energy of micelle formation for model surfactants in a Lennard-Jones solvent by employing a hybrid semi-grand Monte Carlo simulation scheme in combination with umbrella sampling and configurational bias techniques. Comparing the results to theoretical prediction, we obtain good agreement for large micellar sizes. We also study the effect of changing the surfactant headgroup size and tail length on the critical micelle concentration. The values of and the trends in the calculated critical micelle concentrations do agree with experimental observation for nonionic surfactants. The results open up the way for the calculation of critical micelle concentrations using realistic atomic force fields.  相似文献   

6.
Surface tension measurements and the kinetic study of the basic hydrolysis of ethyl p-nitrophenyl chloromethyl phosphonate were used to examine the structural behavior and catalytic activity of the cethyltrimethylammonium bromide (CTAB)-polyoxyethylene (10) oleyl ether, C(18)H(35)(OCH(2)CH(2))(10)OH (Brij 97)-water mixed micellar system. Application of the regular solution model to the experimental data yields the value of the interaction parameter beta as -4.6, which indicates an attractive interaction of the surfactants in the mixed micelle and reflects synergistic solution behavior of the mixture. The mixed micellar composition is found to be enriched in the surfactant with the lower critical micelle concentration (cmc). In the kinetic study a nonmonotonic change in the pseudo-first-order rate constant of basic hydrolysis of the substrate is observed with increasing mole fraction of nonionic surfactant. The pseudophase micellar model reveals that the concentration factor mainly contributes to the catalytic effect, while the microenvironmental factor plays a negative role.  相似文献   

7.
The mean aggregation numbers of mixed micelles composed of hydrocarbon surfactants (nonionic/nonionic and ionic/nonionic surfactants) have been determined by the intensity light-scattering method, in order to compare them with the values calculated by using the equations derived. The equations have been derived for representative micellar shapes (disk-like, rod-like, and spherical shapes) by making the assumptions that (i) the surface area of the hydrocarbon core of a mixed micelle is built up by independent contributions from each surfactant monomer, and (ii) the dimension of the hydrocarbon core is determined by the number of carbon atoms of a surfactant. The closest agreement of the observed aggregation numbers with the calculated ones has been obtained for the mixed micelle of an oblate ellipsoidal shape as a geometrical model for a disk-like micelle. This suggests that an oblate ellipsoidal shape may be more probable for a micelle formed at a moderate range of surfactant concentration than a prolate ellipsoidal (a rod-like) and a spherical shape if the assumptions (i) and (ii) hold. The equations presented here are useful, since they make it possible to calculate an accurate aggregation number of the mixed micelle of any composition from the aggregation numbers of the pure micelles of the components and the number of carbon atoms of component surfactants as long as there is no highly specific interaction between different surfactant components.  相似文献   

8.
The formation and properties of aggregates in aqueous surfactant + alcohol mixtures are reviewed, with particular emphasis on: (i) alcohol partition coefficient in micellar solutions; (ii) critical micelle concentration and micelle ionization degree (iii) micelle size and shape and intermicellar interactions; (iv) theoretical aspects; (v) dynamics of the mixed surfactant + alcohol micelles; (vi) phase diagrams of, and microstructure in, selected mixtures; (vii) role of alcohols in microemulsions.  相似文献   

9.
The mixed micelles constituted by a nonionic surfactant widely used in the biochemical field, n-octyl-beta-D-glucopyranoside, and a cationic surfactant with 12 carbon atoms on the hydrophobic tail, dodecyltrimethylammonium bromide, have been studied in aqueous solution, at 298.15 K, by means of conductivity, speed of sound, density, and fluorescence spectroscopy experiments. From these data, the monomeric and micellar phases of the mixed aggregates were fully analyzed through the determination of the total and partial critical micellar concentrations, the dissociation degree of the mixed micelle, the total and partial aggregation numbers, the apparent molar volumes and isentropic compressibilities, the hydration numbers, and the corresponding changes in these thermodynamic properties due to the mixed aggregation process. The experimental findings have been compared with those obtained with several theoretical models, some of them modified in this work to take into account the specific characteristics of the aggregates studied herein.  相似文献   

10.
The effects of different alkyl chains of nonionic surfactants and solubilized polar oily material on the solubilizing capacity of binary anionic‐nonionic mixed surfactant systems were studied. This system includes surface tension measurements to determine the critical micelle concentration. Results were analyzed using regular solution theory to obtain the mixed micelle and the interaction parameter β, in order to evaluate the type of interactions of surfactants in the mixed micelle. Solubilizing capacity has been investigated by measuring the optical density of solubilized polar oily materials like octanol, decanol, and dodecanol. The solubilizing phenomenon exhibited by mixed surfactants systems showed better results than that of the individual surfactant system. The amount of solubilization in mixed surfactant increases with increase in carbon chain length of alkyl polyglucoside.  相似文献   

11.
In conformity with the conclusion obtained previously, the mixed micelle formation of surfactants was treated thermodynamically as the appearance of a macroscopic bulk phase with the aid of the excess thermodynamic quantities similar to those used for the adsorbed film. The composition of surfactant in the mixed micelle and the thermodynamic quantities of micelle formation were found to be evaluated by applying the thermodynamic equations derived. These equations were extended so as to be applicable to any kind of surfactant mixture. It was shown that the critical micelle concentration vs. composition of surfactant curves form a diagram analogous to the phase diagram of binary mixture. Applying the equation to the published data on typical surfactant systems, this thermodynamic approach was proved to be useful to clarify the miscibility of surfactants in the micellar state.  相似文献   

12.
Nonionic surfactants have broad applications such as cleaning and dispersion stabilization, which frequently are hampered by strong temperature sensitivities. As manifested by clouding and decreased solubility with increasing temperature, the interaction between water and the oligo(oxyethylene) head-groups is becoming less favorable. Different aspects of surfactant self-assembly, like the critical micelle concentration, micelle size and shape, intermicellar interactions and phase separation phenomena are reviewed as well as suggested underlying causes of the temperature dependence. Furthermore, the effect of cosolutes on clouding and the behavior of related systems, non-aqueous solutions and nonionic polymers, are examined.  相似文献   

13.
14.
The self-aggregation and supramolecular micellar structure of two surfactants in aqueous solution, the anionic surfactant SDP2S (sodium dodecyl dioxyethylene-2 sulfate) and the nonionic surfactant Triton X-100 (octylphenol-polyoxyethylene ether with 9.5 ethoxy groups), were investigated by NMR spectroscopy. The critical micellar concentration (CMC), the size, and shape of the aggregates were determined by diffusion ordered NMR spectroscopy (DOSY), while 2D NOESY NMR spectra were used to study the mutual spatial arrangement of surfactant molecules in the aggregated state. A nonlinear increase of the micellar hydrodynamic radius, indicating possible sphere-to-rod shape transition, was found for SDP2S at higher surfactant concentrations. Triton X-100 micelles were found to be almost spherical at low surfactant concentrations, but formation of ellipsoid shaped particles and/or micellar aggregation was observed at higher concentrations. The NOESY data show that at low concentration Triton X-100 forms a two-layer spherical structure in the micelles, with partially overlapping internal and external layers of Triton X-100 molecules and no distinct hydrophilic-hydrophobic boundary.  相似文献   

15.
Association-dissociation equilibria and the static scattering function were formulated using precise thermodynamic functions for nonionic surfactant solutions including long, stiff, threadlike micelles. The present theory is applicable for micellar solutions with the surfactant concentration much higher than the critical micelle concentration and containing highly growing threadlike micelles. The scattering function formulated was compared with experimental light scattering data for aqueous solutions of a nonionic surfactant, penta(oxyethylene glycol) n-decyl ether (C12E5), at different surfactant concentrations and also temperatures.  相似文献   

16.
Here, we review two recent theoretical models in the field of ionic surfactant micelles and discuss the comparison of their predictions with experimental data. The first approach is based on the analysis of the stepwise thinning (stratification) of liquid films formed from micellar solutions. From the experimental step-wise dependence of the film thickness on time, it is possible to determine the micelle aggregation number and charge. The second approach is based on a complete system of equations (a generalized phase separation model), which describes the chemical and mechanical equilibrium of ionic micelles, including the effects of electrostatic and non-electrostatic interactions, and counterion binding. The parameters of this model can be determined by fitting a given set of experimental data, for example, the dependence of the critical micellization concentration on the salt concentration. The model is generalized to mixed solutions of ionic and nonionic surfactants. It quantitatively describes the dependencies of the critical micellization concentration on the composition of the surfactant mixture and on the electrolyte concentration, and predicts the concentrations of the monomers that are in equilibrium with the micelles, as well as the solution’s electrolytic conductivity; the micelle composition, aggregation number, ionization degree and surface electric potential. These predictions are in very good agreement with experimental data, including data from stratifying films. The model can find applications for the analysis and quantitative interpretation of the properties of various micellar solutions of ionic surfactants and mixed solutions of ionic and nonionic surfactants.  相似文献   

17.
The solubilisation of poorly soluble antineoplastic drug camptothecin by nonionic surfactants (polysorbates and octylphenol ethoxylates) and alkyldimethylamine oxide surfactants with the alkyl chain length 8 to 16 carbon atoms was investigated. The hydrophobicity of the solubilising agent turned out to be the primary structural parameter controlling the solubility efficiency of camptothecin in an aqueous solution. The quantitative parameter of solubilisation (drug loading coefficient) provided values in the range of 0.1–1.2% and 0.1–1.0% for alkyldimethylamine oxides and nonionic surfactants, respectively. The decreasing number of oxyethylene units and the extension of the hydrophobic part of nonionic surfactant molecule resulted in the increase of camptothecin solubility. From the dynamic light scattering measurements, the hydrodynamic diameter values of camptothecin-loaded alkyldimethylamine oxide and nonionic micelles were found in the range of 4–42 nm and 5–120 nm, respectively. The experimental values confirmed the increase in micellar size with the increasing alkyl chain length. The values of the packing parameter of camptothecin-loaded dodecyldimethylamine oxide micelles indicate their spherical shape at all the investigated surfactant concentrations. A simple computer model of camptothecin-loaded dodecyldimethylamine oxide micelle provided the diameter of the structure cross section which is consistent with the experimental values.   相似文献   

18.
C12-s-C12•2Br和C12En混合水溶液的胶团化行为   总被引:3,自引:0,他引:3  
季铵盐二聚表面活性剂C12 s C12•2Br(s=2、3、4、6)和非离子表面活性剂C12E10或C12E23在水溶液中生成混合胶团.其临界胶团总浓度cmcT值介于二元复配体系中各组分的临界胶团浓度和之间.当添加少量非离子型表面活性剂(在水溶液中的摩尔分数α2=0.1)时,混合胶团中C12E10或C12E23的摩尔分数均已超过0.35;随着溶液中非离子型表面活性剂含量的增大,混合胶团中逐渐以C12E10或C12E23成分为主.  相似文献   

19.
Electric properties of mixed anionic-nonionic surfactant systems in aqueous solutions above the CMC have been studied in terms of pNa values, electrical conductivities, and dielectric constants; these systems are sodium 3, 6, 9-trioxaicosanoate (ECL) — alkyl polyoxyethylene ethers (CmPOE; m=12, 14, 16, and 18). The degree of ionic dissociation of mixed micelle increases with increasing the number of carbon atoms of the alkyl group in the nonionic surfactant. The electrical conductivity increases with increasing the alkyl chain length in the nonionic surfactant, in spite of the increase of the activation energy for conduction. The size of mixed micelles also increases with increasing alkyl chain length. This may be attributed to the fact that the mixed micelle is formed more easily by a nonionic surfactant including long alkyl chains than for one having shorter alkyl chains.  相似文献   

20.
利用表面张力法, 研究了非离子表面活性剂Triton X-100和离子表面活性剂十六烷基三甲基溴化铵(CTAB)混合体系在混合极性溶剂乙二醇/水(乙二醇的体积分数分别为5%、10%和20%)中的热力学性质和胶团化行为. 结果表明, 混合体系在乙二醇水溶液中存在协同效应, 临界胶束浓度随乙二醇含量的增加而增大. 利用Rubingh和Maeda模型计算了混合物中各组分在胶团相中的组成、相互作用参数以及自由能的贡献. 在实验研究的乙二醇浓度范围内, 发现该非离子/离子混合体系在离子组分摩尔分数约为0.3时, 协同效应最强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号