首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
郑杰允  汪锐  李泓 《物理化学学报》2001,30(10):1855-1860
采用固相烧结法制备了纯相Li2MnO3正极材料及靶材,采用脉冲激光沉积(PLD)法在氧气气氛、不同温度下沉积了Li2MnO3薄膜. 通过X射线衍射(XRD)和拉曼(Raman)光谱表征了薄膜的晶体结构,采用扫描电镜(SEM)观察薄膜形貌及厚度,利用电化学手段测试了Li2MnO3薄膜作为锂离子电池正极材料性能. 结果表明,PLD 方法制备的纯相Li2MnO3薄膜随着沉积温度升高薄膜结晶性变好. 25 ℃沉积的薄膜难以可逆充放电,400 ℃沉积的薄膜具有较高的电化学活性和循环稳定性. 相对于粉末材料,400与600 ℃制备的Li2MnO3薄膜电极平均放电电位随着循环次数的衰减速率明显低于相应的粉体材料.  相似文献   

2.
以碳酸锰(MnCO3)为前体,空气氛围下采用不同温度(300℃、350℃、400℃)煅烧, 制备了3种介孔二氧化锰(MnO2)材料,分别与粘结剂混合喷涂至石英晶片作为电极,利用石英晶体微天平(QCM)监测了3种材料在0.1 mol/L Na2SO4溶液中随循环伏安过程的电化学性能变化.分析结果表明,3种材料在首圈循环中都呈现出显著的质量增加,发生了不可逆反应过程; 300℃煅烧制备的MnO2材料具备更好的电化学稳定性和容量保持能力.将300℃, 350℃和400℃煅烧的MnO2各自作为正极与活性炭负极组成超级电容器, 进行充放电测试,首圈均有35%~40%的容量损失; 三者稳定循环时放电容量分别为15.9, 12.9和11.7 mA h/g.QCM的分析与充放电测试结果相一致,表明QCM可用于比较不同介孔二氧化锰材料的电化学性能.  相似文献   

3.
采用溶胶-凝胶法制备了一系列富锂锰基正极材料xLi2MnO3?(1-x)LiNi0.5Mn0.5O2(x=0.1-0.8),通过X射线衍射(XRD)仪,扫描电子显微镜(SEM)和电化学测试等检测手段表征了所得样品的晶体结构与电化学性能,研究了不同组分下富锂材料的结构与电化学性能.结果表明:Li2MnO3组分含量较高时,材料的首次放电容量较高,但循环稳定性较差;该组分含量较少时,所得样品中出现尖晶石杂相,且放电容量较低,但循环稳定性较好;综合来看,x=0.5时材料的电化学性能最优.x=0.4,0.6时材料也表现出了较好的电化学性能,值得关注.  相似文献   

4.
采用低温燃烧法合成了锂离子电池正极材料xLi2MnO3-(1-x)LiNi0.7Co0.3O2,对合成产物的结构、形貌和电化学性能进行了系统的研究,通过单因素试验对合成条件和材料的组成进行了优化。结果表明:采用低温燃烧法合成的富锂层状正极材料具有α-NaFeO2型层状结构、球状形貌和良好的电化学性能;其最佳合成条件为:回火温度850℃,回火时间20 h;Li2MnO3的最佳配比为x=0.7。在此条件下合成的0.7Li2MnO3-0.3LiNi0.7Co0.3O2,最高放电比容量达到263.1 mAh.g-1,并具有良好的循环性能和倍率性能。  相似文献   

5.
采用射频(RF)磁控溅射技术制备了用于全固态薄膜锂电池的非晶态和多晶LiCoO2阴极薄膜,利用XRD和SEM研究了沉积温度对LiCoO2薄膜结构和形貌的影响,并研究了高温退火后薄膜的电化学性能.研究结果表明,随著基片温度的不同,薄膜成分、表面形貌以及电化学行为有明显差异.室温沉积的薄膜很难消除薄膜中Li2CO3的影响,经过高温退火处理后也无法形成有效的多晶LiCoO2薄膜,而150℃沉积的薄膜经过高温退火后形成了有利于锂离子嵌入的多晶LiCoO2结构,薄膜显示出了较好的电化学性能.  相似文献   

6.
以FePO4为前驱体, 采用碳热还原法合成了LiFePO4/C复合正极材料; 通过TG-DTA、FTIR、XRD 等技术研究了反应历程, 分析了不同焙烧温度下产物的组成及杂相存在的原因, 并测试了其电化学性能. 研究表明, 300 ℃下LiFePO4已作为主要的相存在, 显示了较低的成相温度; 300、400、500 ℃下样品中存在一定量的杂相Li3PO4和Fe2O3, 600 ℃得到纯相的LiFePO4, 而在700 ℃下出现了焦磷酸盐Li4P2O7, 这些杂相的存在影响了其电化学性能, 600 ℃样品具有最佳的电化学性能, 其在0.1C下首次放电容量达146 mAh·g-1, 循环15 次后容量还保持为141 mAh·g-1.  相似文献   

7.
以Mn(CH3COO)2·4H2O为原料,利用直流电沉积法合成MnO2电极材料,在制备过程中向溶液中添加h(NO3)3·6H2O对MnO2电极进行改性.分别采用X射线衍射(XRD)、扫描电子显微镜(SEM)和原子吸收方法分析了电极的结构、形貌以及组成.通过BET分析,发现掺La后MnO2的比表面积明显增大.采用循环伏安(CV)和恒流充放电技术测试了MnO2的电化学性能.结果表明,MnO2比容量为198.72 F·g-1,掺La后MnO2的电化学性能显著改善,其比容量为276.60 F·g-1.  相似文献   

8.
锂磷氧氮(LiPON)薄膜电解质和全固态薄膜锂电池研究   总被引:8,自引:0,他引:8  
刘文元  傅正文  秦启宗 《化学学报》2004,62(22):2223-2227
采用电子束热蒸发Li3PO4与氮等离子体辅助相结合的方法制备了含氮磷酸锂(LiPON)电解质薄膜,已测得该非晶态电解质薄膜在温度为300K时的离子导电率为6.0×10-7 S/cm,电子电导率低于10-10 S/cm,电化学稳定窗口为5.0V.以脉冲激光沉积法(PLD)制备的非晶态Ag0.5V2O5薄膜为阴极,真空热蒸发法制备的金属锂为阳极,LiPON薄膜为电解质,成功地制备了一个新的Li/LiPON/Ag0.5V2O5全固态薄膜锂电池.该电池以14μA/cm2电流充/放电时,首次放电容量达到62 μAh·cm-2·μm-1,10次循环后容量衰减缓慢,衰减率约为0.2%,循环寿命达到550次以上.  相似文献   

9.
平板显示是显示技术发展的方向,发光材料的薄膜化是显示技术发展的重要研究对象.本研究采用电沉积-烧结方法制备出了氧化钇铕红色荧光薄膜.在0.1 mol/L硝酸钇溶液中加入4%(摩尔分数)0.1 mol/L硝酸铕掺杂,用三电极体系进行阴极电沉积,工作电极的电位为-1.2 V(相对于Ag/AgCl电极),温度65℃,沉积时间为400 s,500℃灼烧2 h,制备出的发光薄膜与高温固相法制备的薄膜对比,其发射光谱的峰位相同.XRD检测显示经不同温度灼烧后,随温度的升高,氧化钇晶相逐渐完整.经SEM扫描,薄膜沉积均匀平整.  相似文献   

10.
脉冲激光沉积纳米TiO2薄膜电极的现场光电化学   总被引:1,自引:0,他引:1  
在O3 /O2 气氛中采用 35 5nm激光烧蚀金属钛靶的反应性沉积薄膜方法 ,成功地在镀ITO膜的玻璃基片上制备了纳米锐钛矿相TiO2 薄膜电极 .用循环伏安法研究了在Li/TiO2 电池中TiO2 薄膜电极的电化学嵌入Li离子的行为 .由现场快速紫外可见吸收光谱实时监测TiO2 薄膜电极的显色特性 ,在波长 42 0和 6 5 0nm附近出现 2个明显的吸收峰 ,并发现TiO2 薄膜电极的吸收谱的涨落过程与Li离子的嵌入和脱嵌过程具有相关性与可逆性 ,表明该纳米TiO2 薄膜电极具有高质量的光电化学性能 .  相似文献   

11.
采用喷雾干燥法制备了xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)系列富锂层状固溶体正极材料, 并通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、电化学阻抗测试(EIS)以及充放电测试等多种手段研究了样品组分中Li2MnO3 含量变化对材料结构及电化学性能的影响.研究发现, 材料的微观结构随着Li2MnO3含量的增加而逐渐发生转变.当x≤0.2时, 样品的微观结构与其母体材料LiNi5/12Mn5/12Co2/12O2相似; 而当x≥0.4时, 样品的微观结构与Li2MnO3有很高的相似性.当x=0.3时, 材料表现出两相共存的特征.HRTEM结果显示, 随着Li2MnO3含量的增加, 样品中过渡金属原子的排列逐渐由长程有序转变为长程无序而短程有序, 并且在高Li2MnO3含量的样品中观察到了金属阳离子混排的现象.充放电测试结果表明, 当x≤0.6时, 材料的放电比容量随着x的增加而增加; 当x>0.6时, 其放电比容量则随着x的增加而下降; 当x=0.6时, 放电比容量最高, 室温及高温(50℃)下分别为260 和304 mA·h/g.EIS研究结果表明, 这种微观结构上由有序向无序的转变会导致材料电荷转移阻抗的增加, 进而影响材料的电化学性能.  相似文献   

12.
Li2MnO3-doped spinel LiMn2O4 composites were synthesized by sol-gel method to improve the electrochemical performance of LiMn2O4. The microstructures, morphologies and electrochemical performance of the obtained xLi2MnO3·(1-x)LiMn2O4 composites were characterized by X-ray diffraction(XRD), scan electron microscopy(SEM) and a galvanostatic charge-discharge process. It was found that both Li2MnO3 and LiMn2O4 components exist in xLi2MnO3·(1-x)LiMn2O4(02MnO3·0.7LiMn2O4 composite shows the optimized electrochemical performance, including discharge capacity and cycle stability. It was demonstrated that Li2MnO3-doped spinel LiMn2O4 cathode material can work at wide potential window with quite good capacity retention and considerably larger reversible capacity compared to single-phase LiMn2O4 component.  相似文献   

13.
脉冲激光沉积LiFePO4阴极薄膜材料及其电化学性能   总被引:5,自引:0,他引:5  
采用脉冲激光沉积结合高温退火的方法在不锈钢基片上制备了LiFePO4薄膜电极. XRD谱图显示, 经650 ℃退火制得的是具有橄榄石结构的LiFePO4薄膜. 充放电测试表明, LiFePO4薄膜具有3.45/3.40 V的充放电平台, 与LiFePO4粉体材料相当. 首次放电容量约为27 mAh•g-1, 充放电循环100次后容量衰减51%.  相似文献   

14.
采用脉冲激光沉积技术(PLD)制备了不同比例的Al N-Fe纳米复合薄膜(Al N和Fe摩尔比为3:1;2:1;1:1;1:2),首次研究了其作为锂离子电池负极材料的电化学行为。发现当Al N和Fe的比例为2:1时,复合薄膜具有最佳的电化学性能。在500 m A·g~(-1)电流密度下,Al N-Fe(2:1)经过100次循环充放电后容量仍能保持510 m Ah·g~(-1)。对其电化学反应机理研究发现,在放电过程中,Al N-Fe纳米复合薄膜中的Al N发生分解,Al N-Fe生成Li Al合金和Li_3N。纳米Fe颗粒的引入有效提高Al N的电化学活性;在充电过程中,部分Li_3N与Fe纳米颗粒反应生成了Fe_3N,其余部分Li_3N重新生成Al N。随后的充放电过程由Fe_3N、Al N和Al三者与Li的可逆反应共同参与,保证了Al N-Fe纳米复合薄膜优异的电化学性能。该研究为设计开发新型锂离子电池电极材料提供了一种新的思路。  相似文献   

15.
Aerosol flame pyrolysis deposition method was applied to deposit the oxide glass electrolyte film and LiCoO2 cathode for thin film type Li-ion secondary battery. The thicknesses of as-deposited porous LiCoO2 and Li2O–B2O3–P2O5 electrolyte film were about 6 μm and 15 μm, respectively. The deposited LiCoO2 was sintered for 2 min at 700 °C to make partially densified cathode layer, and the deposited Li2O–P2O5–B2O3 glass film completely densified by the sintering at 700 °C for 1 h. After solid state sintering process the thicknesses were reduced to approximately 4 μm and 6 μm, respectively. The cathode and electrolyte layers were deposited by continuous deposition process and integrated into a layer by co-sintering. It was demonstrated that Aerosol flame deposition is one of the good candidates for the fabrication of thin film battery.  相似文献   

16.
本文合成了掺铝富锂材料Li1.2Mn0.543Co0.078Ni0.155Al0.030O2,并使用扫描电镜(SEM)、粉末X射线衍射(XRD)、电感耦合等离子体原子发射光谱(ICP-AES)和拉曼散射光谱(Raman)等观察表征富锂和掺铝富锂材料. 结果表明,共沉淀法合成掺铝富锂材料,具有R-3m空间群结构,Al元素进入晶格,未单独成相. 电化学性能和非现场XRD测试结果表明,4%(by mole)掺铝富锂电极100周期循环容量保持率83.7%,Al元素掺杂有利于容量的释放,增强了电极富锂材料的结构稳定性,提高了循环性能.  相似文献   

17.
Li2MnO3正极材料具有较高的理论容量(459 mAh·g -1),不仅安全无毒还能够大大降低电池的制造成本,从而受到越来越多的关注. 然而,较低的首圈库仑效率和较差的循环性能妨碍了其在锂电池中的实际应用. 在此,作者研究了MgF2涂层对Li2MnO3正极材料的电化学性能. 结果表明,MgF2涂层诱导部分层状Li2MnO3向尖晶石相转化,从而降低了首圈不可逆容量,提高库仑效率. 重量比为0.5%、1.0%和2.0%的MgF2涂层电极的初始库仑效率分别为70.1%、77.5%和84.9%,而原始电极仅为57.7%. 充放电曲线表明,1.0wt.%MgF2涂层改性的Li2MnO3具有最高的充放电容量和最佳的循环稳定性. 40个循环后1.0wt.%MgF2涂层样品的容量保持率为81%,远高于原始样品的容量保持率(53.6%). 电化学阻抗谱结果表明MgF2涂层减少了不利成分的快速沉积,并改善了电极的循环稳定性.  相似文献   

18.
通过调控薄膜的沉积条件,探索La2CuO4的晶体结构对电化学性质的影响。采用脉冲激光沉积设备在YSZ(100)单晶基底上沉积一系列La2CuO4薄膜,通过调节沉积时的氧压,制备了不同晶体结构的La2CuO4薄膜。 研究表明,沉积氧压的变化使薄膜晶体结构发生相转变,从T'相→T*相→T相。 T'相为沿着c轴择优生长的单晶四方相,且表现出较大的界面极化电阻,在850 ℃的Rp值为2.351 Ω·cm2。 T*相为T'相和T相的混合相,在850 ℃的电阻值介于T'相和T相之间。 T相为正交相,相对于其它相结构表现出较低的界面极化电阻,沉积氧压为26.60 Pa下制备的T相在850 ℃的电阻值为0.783 Ω·cm2,比T'相的电阻值低近67%。 并且,正交相表面有相对较高的氧空位浓度,有利于氧气的吸附和扩散,加速了阴极的氧还原反应。 因此,具有正交对称性的La2CuO4的电化学性质优于其它对称性。 这一结果也表明可以通过改变薄膜材料的晶体结构,降低界面极化电阻,提高阴极薄膜的电化学性能。  相似文献   

19.
A novel synthetic method of microwave processing to prepare Li_2FeSiO_4 cathode materials is adopted.The Li_2FeSiO_4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing.Olivin-type Li_2FeSiO_4 sample with uniform and fine particle sizes is successfully and fast synthesized by microwave heating at 700℃in 12 min.And the obtained Li_2FeSiO_4 materials show better electrochemical performance and microstructure than those of Li_2FeSiO_4 sample by the conventional solids...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号