首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li Z  Dzenis Y 《Talanta》2011,85(1):82-85
Pristine and Co-doped In2O3 nanowires were synthesized via electrospinning with subsequent calcination. Scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were used to characterize nanowire morphology and structure. Ethanol sensing performance analyzed in the range of temperatures and concentrations showed that Co-doped In2O3 nanowires exhibited significantly enhanced sensitivity and rate of performance with the response and recovery times of 2 s and 3 s, respectively. Combined with excellent selectivity and linearity, these properties make the fabricated nanowires a good candidate for practical ethanol sensing. Further performance improvements are possible with utilization of nanofiber continuity intrinsic of the used top-down nanowire nanomanufacturing process.  相似文献   

2.
Direct scandium- and lanthanum-catalyzed etherifications of propargyl alcohols 1 and 6 in MeNO?-H?O provided propargyl ethers 3, 4 and 7 in high yields. In addition, reactions of 1 and 6 with thiols exclusively yielded the corresponding propargyl sulfides.  相似文献   

3.
Photoionization mass spectrometry was used to investigate the dynamics of ion-neutral complex-mediated dissociations of the n-pentane ion (1). Reinterpretation of previous data demonstrates that a fraction of ions 1 isomerizes to the 2-methylbutane ion (2) through the complex CH3CH+CH 3 · CH2CH3 (3), but not through CH3CH+CH2CH 3 · CH3 (4). The appearance energy for C3Hin 7 + formation from 1 is 66 kJ mol?1 below that expected for the formation of n-C3H 7 + and just above that expected for formation of i-C3H 7 + . This demonstrates that the H shift that isomerizes C3H 7 + is synchronized with bond cleavage at the threshold for dissociation to that product. It is suggested that ions that contain n-alkyl chains generally dissociate directly to more stable rearranged carbenium ions. Ethane elimination from 3 is estimated to be about seven times more frequent than is C-C bond formation between the partners in that complex to form 2, which demonstrates a substantial preference in 3 for H abstraction over C-C bond formation. In 1 → CH3CH+CH2CH3 + CH3 by direct cleavage of the C1–C2 bond, the fragments part rapidly enough to prevent any reaction between them. However, 1 → 2 → 4 → C4H 8 + + CH4 occurs in this same energy range. Thus some of the potential energy made available by the isomerization of n-C4H9 in 1 is specifically channeled into the coordinate for dissociation. In contrast, analogous formation of 3 by 1 → 3 is predominantly followed by reaction between the electrostatically bound partners.  相似文献   

4.
1 INTRODUCTION Recently, the researches on inorganic-organic hy-brid compounds represent an advanced field in mate-rial science[1]. At the molecular level, the combina-tion of two extremely different components providesan avenue to design new hybrid materials as well asthe ability to modulate properties of one or more ofthe components[2~6]. Some attractive properties, suchas efficient luminescence[2~4], ideal thermal and me-chanical stability, interesting magnetic[5], non-linearoptical[…  相似文献   

5.
Acetylmelodorinol, chrysin and polycarpol, together with benzoic acid, benzoquinone and stigmasterol were isolated from the leaves of Mitrella kentii (Bl.) Miq. The compounds were evaluated for their ability to inhibit prostaglandin E? (PGE?) and thromboxane B? (TXB?) production in human whole blood using a radioimmunoassay technique. Their inhibitory effect on platelet activating factor (PAF) receptor binding to rabbit platelet was determined using 3H-PAF as a ligand. Among the compounds tested, chrysin showed a strong dose-dependent inhibitory activity on PGE(2) production (IC?? value of 25.5 μM), which might be due to direct inhibition of cyclooxygenase-2 (COX-2) enzymatic activity. Polycarpol, acetylmelodorinol and stigmasterol exhibited significant and concentration-dependent inhibitory effects on TXB? production with IC?? values of 15.6, 19.1 and 19.4 μM, respectively, suggesting that they strongly inhibited COX-1 activity. Polycarpol and acetylmelodorinol showed strong dose-dependent inhibitory effects on PAF receptor binding with IC?? values of 24.3 and 24.5 μM, respectively.  相似文献   

6.
Metastable ion decompositions, collision-activated dissociation (CAD), and neutralization-reionization mass spectrometry are utilized to study the unimolecular chemistry of distonic ion ·CH2CH2CH?OH (2) and its enol-keto tautomers CH3CH=CHOH (1 ) and CH3CH2CH=O (3). The major fragmentation of metastable 1–3 is H· loss to yield the propanoyl cation, CH3CH2C≡O+. This reaction remains dominant upon collisional activation, although now some isomeric CH2=CH-CH+ OH is coproduced from all three precursors. The CAD and neutralization-reionization (+NR+) spectra of keto ion 3 are substantially different from those of tautomers 2 and 1. Hence, 3 without sufficient energy for decomposition (i. e. , “stable” 3) does not isomerize to the ther-modynamically more stable ions 2 or 1, and the 1,4-H rearrangement H-CH2CH2CH=O(3 ) → CH2CH2CH+ O-H (2 ) must require an appreciable critical energy. Although the fragment ion abundances in the + NR + (and CAD) spectra of 1 and 2 are similar, the relative and absolute intensities of the survivor ions (recovered C3H6O ions in the +NR+ spectra) are markedly distinct and independent of the internal energy of 1 and 2 . Furthermore, 1 and 2 show different MI spectra. Based on these data, distonic ion 2 does not spontaneously rearrange to enol ion 1 (which is the most stable C3H6O of CCCO connectivity) and, therefore, is separated from it by an appreciable barrier. In contrast, the molecular ions of cyclopropanol (4 ) and allyl alcohol (5 ) isomerize readily to 2 , via ring opening and 1,2-H? shift, respectively. The sample found to generate the purest 2 is α-hydroxy-γ-butyrolactone. Several other precursors that would yield 2 by a least-motion reaction cogenerate detectable quantities of enol ion 1 , or the enol ion of acetone (CH2=C(CH3)OH, 6 ), or methyl vinyl ether ion (CH3OCH=CH 2 , 7 ). Ion 6 is coproduced from samples that contain the —CH2—CH(OH)—CH2— substructure, whereas 7 is coproduced from compounds with methoxy substituents. Compared to CAD, metastable ion characteristics combined with neutralization-reionization allow for a superior differentiation of the ions studied.  相似文献   

7.
First‐principles calculations were carried out on recently synthesized Re2 and Re3 as well as hypothetical Tc and Mn nitrides. It is found that structure and covalent bonds play an important role in determining mechanical properties. Under a large strain along (0001)〈101 0〉direction, Re2N undergoes a phase transformation with a slight increase in ideal shear strength. On the other hand, it is transformed into a phase with weaker mechanical properties, if the strain is along Re2〈1 21 0〉 direction. Mn2N can be synthesized under moderate conditions due to its more negative formation energy. Re2N, Re3N, and Mn2N show structure‐related mechanical property under larger strains to ReB2 but exhibit much lower ideal strengths, which is attributed to the larger ionicity of cation–anion bond. Three‐dimensional framework of strong covalent bonds is thus highly recommended to design superhard materials. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

8.
The tachykinin receptor NK? is a member of the rhodopsin family of G-protein coupled receptors. The NK? receptor has been regarded as an important drug target due to diverse physiological functions and its possible role in the pathophysiology of psychiatric disorders, including schizophrenia. The NK3 receptor is primarily activated by the tachykinin peptide hormone neurokinin B (NKB) which is the most potent natural agonist for the NK? receptor. NKB has been reported to play a vital role in the normal human reproduction pathway and in potentially life threatening diseases such as pre-eclampsia and as a neuroprotective agent in the case of neurodegenerative diseases. Agonist binding to the receptor is a critical event in initiating signaling, and therefore a characterization of the structural features of the agonists can reveal the molecular basis of receptor activation and help in rational design of novel therapeutics. In this study a molecular model for the interaction of the primary ligand NKB with its G-protein coupled receptor NK? has been developed. A three-dimensional model for the NK? receptor has been generated by homology modeling using rhodopsin as a template. A knowledge based docking of the NMR derived bioactive conformation of NKB to the receptor has been performed utilizing limited ligand binding data obtained from photoaffinity labeling and site-directed mutagenesis studies. A molecular model for the NKB-NK? receptor complex obtained sheds light on the topographical features of the binding pocket of the receptor and provides insight into the biochemical data currently available for the receptor.  相似文献   

9.
For a series of p-phenylene-based oligomers terminated with two triphenylamines, their absorption, photoluminescence, and band gaps show a pattern of extensive π-conjugation with increasing array size. Oligomers with large central arrays have greater quantum yields than their small analogues. Cyclic voltammetric (CV) measurements indicated two-step oxidations of the two diphenylamino groups for compounds 1-5 and one-step oxidations for the two amines of large oligomers 6 and 7.  相似文献   

10.
Using ESR and IR spectroscopy, the structures of >Si(O–C·=O)(CH2–CH3) (1) and >Si(CH2–CH·–CH3)(CH2–CH3) (2) radicals were deciphered. The directions and kinetic parameters of reactions of intramolecular rearrangements in these radicals were determined. The reactions of hydrogen atom abstraction in radical (1) from the CH2 and CH3 groups were studied. It was found that the endothermic reaction of hydrogen atom abstraction from the methyl group occurs at a higher rate than the exothermic reaction with the methylene group. The differences are determined by changes in the size of a cyclic transition state. Based on the experimental data, the strengths of separate C–H bonds in surface fragments are compared. The rearrangement >Si(CH2–CH·–CH3)(CH2–CH3) >Si(C·(CH3)2)(CH2–CH3) was discovered and its mechanism was determined. One of its steps is the skeletal isomerization Si- (2)- . (1)Si- (1)- . (2). Experimental data are analyzed using the results of quantum-chemical calculations of model systems.  相似文献   

11.
The potential energy surfaces of the CF(3)CH═CH(2) + OH reaction have been investigated at the BMC-CCSD level based on the geometric parameters optimized at the MP2/6-311++G(d,p) level. Various possible H (or F)-abstraction and addition/elimination pathways are considered. Temperature- and pressure-dependent rate constants have been determined using Rice-Ramsperger-Kassel-Marcus theory with tunneling correction. It is shown that IM1 (CF(3)CHCH(2)OH) and IM2 (CF(3)CHOHCH(2)) formed by collisional stabilization are major products at 100 Torr pressure of Ar and in the temperature range of T < 700 K (at P = 700 Torr with N(2) as bath gas, T ≤ 900 K), whereas CH(2)═CHOH and CF(3) produced by the addition/elimination pathway are the dominant end products at 700-2000 K. The production of CF(3)CHCH and CF(3)CCH(2) produced by hydrogen abstractions become important at T ≥ 2000 K. The calculated results are in good agreement with available experimental data. The present theoretical study is helpful for the understanding the characteristics of the reaction of CF(3)CH═CH(2) + OH.  相似文献   

12.
RuCl?·3H?O was found to be an effective catalyst for reactions of indoles, 2-methylthiophene, and 2-methylfuran with aldehydes to afford the corresponding bis(indolyl)methanes, bis(thienyl)methanes, and bis(fur-2-yl)methanes in moderate to excellent yields. Experimental results indicated that mono(indolyl)methanol is not the reaction intermediate under these reaction conditions.  相似文献   

13.
O? adsorption is a key process for further understanding the mechanism of selective CO oxidation (SCO) on gold catalysts. Rate constants related to the elementary steps of O? adsorption, desorption and surface bonding, as well as the respective activation energies, over a nanosized Au/γ-Al?O? catalyst, were determined by Reversed-Flow Inverse Gas Chromatography (RF-IGC). The present study, carried-out in a wide temperature range (50-300 °C), both in excess as well as in the absence of H?, resulted in mechanistic insights and kinetic as well as energetic comparisons, on the sorption processes of SCO reactants. In the absence of H?, the rate of O? binding, over Au/γ-Al?O?, drastically changes with rising temperature, indicating possible O? dissociation at elevated temperatures. H? facilitates stronger O? bonding at higher temperatures, while low temperature binding remains practically unaffected. The lower energy barriers observed, under H? rich conditions, can be correlated to O? dissociation after hydrogenation. Although, H? enhances both selective CO reactant's desorption, O? desorption is more favored than that of CO, in agreement with the well-known mild bonding of SCO reactant's at lower temperatures. The experimentally observed drastic change in the strength of CO and O? binding is consistent both with well-known high activity of SCO at ambient temperatures, as well as with the loss of selectivity at higher temperatures.  相似文献   

14.
《Chemical physics letters》1986,123(4):331-336
The potential energy surface for the CH4+CH4+ reaction system has been calculated with the ab initio method. A stable complex, responsible for the complex mechanism, has been found but is hard to reach. Each of the two direct mechanisms, hydrogen transfer and proton transfer, has been shown to consist of a combination of electron transfer and hydrogen atom transfer processes.  相似文献   

15.
The title compounds have been respectively synthesized by solution process and solvothermal reaction, and their crystal structures were determined by X-ray diffraction method. For (CH3CH2CH2CH2NH3)6(BiI6)(I)2I3 1, it crystallizes in tficlinic, space group P1^- with Mr = 2049.76, a = 8.5719(1), b = 11.7461(3), c = 15.700(1)A, V = 1451.4(1)A^3, Z = 1, Dc = 2.345 g/cm^3, F(000) = 924, μ(MoKα) = 8.907 mm^-1, T = 293(2) K, the final R = 0.0655 and wR = 0.0804 for 2399 observed reflections with I 〉 2σ(I). For (NH3CH2CH2NH3)2Bi2I10 2, it crystallizes in monoclinic, space group P21/n with Mr= 1811.20, a = 8.434(4), b = 13.862(6), c = 13.362(6)A, V = 1499.9(12)A^3, Z = 2, Dc = 4.010 g/cm^3, F(000) = 1536,μ(MoKα) = 22.007 mm^-1, T = 293(2) K, the final R = 0.0584 and wR = 0.1451 for 1798 observed reflections with I 〉 2σ(I). The structures of 1 and 2 contain halobismuthate monomer and dimers, respectively. It is noteworthy that the dimers and their organic counters in 2 connect each other by N…I hydrogen bonds to form a layered structure, and the electrostatic interactions and crystal packing forces between layers give rise to the packing of the crystal. The optical absorption spectra of 1 and 2 reveal the appearance of sharp optical gaps of 2.13 and 2.01 eV, respectively.  相似文献   

16.
《Chemical physics letters》1986,126(2):119-123
The Ã2A1-X̃2E electronic spectrum of jet-cooled methoxy radical has been examined by the LIF technique. Two newly discovered vibrational bands of 2930 and 1390 cm−1 are assigned to ν1 (totally symmetric C-H stretching) and a degenerate ν5 mode, respectively. The predissociation, CH3O → CH3 + O in the Ã2A1 state is newly elucidated and the threshold energy is deter- mined as 5100 cm−1 from the potential minimum. For the CH3O-Ar complex, the threshold energy is reduced by about 100 cm−1.  相似文献   

17.
The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.  相似文献   

18.
Ever since the idea arose that melatonin might promote sleep and resynchronize circadian rhythms, many research groups have centered their efforts on obtaining new melatonin receptor ligands whose pharmacophores include an aliphatic chain of variable length united to an N-alkylamide and a methoxy group (or a bioisostere), linked to a central ring. Substitution of the indole ring found in melatonin with a naphthalene or quinoline ring leads to compounds of similar affinity. The next step in this structural approximation is to introduce a quinoxaline ring (a bioisostere of the quinoline and naphthalene rings) as the central nucleus of future melatoninergic ligands.  相似文献   

19.
The ν2 and ν5 bands of CH335Cl and CH337Cl between 1300 and 1600 cm−1 have been analysed using a Fourier transform spectrum with 0.006 cm−1 resolution. For CH335Cl, the microwave data and 1200 lines from the IR spectrum with J⩽ 50 were fitted with an overall r.m.s. error of 0.00079 cm−1 using the method of predicative observations. A similar fit for 900 lines of CH337Cl gave an overall r.m.s. error of 0.00055 cm−1, providing erroneous microwave data on the ν5 level are omitted. Improved molecular constants are reported for both isotopic species. As expected, the values for ν2 and ν5 are little affected by chlorine isotopic substitution.  相似文献   

20.
Nitrogen (N) is a major nutrient element controlling the cycling of organic matter in the biosphere. Its availability in soils is closely related to biological productivity. In order to reduce the negative environmental impact, associated with the application of mineral N-fertilizers, the use of ammonoxidised technical lignins is suggested. They can act as potential slow N-release fertilisers which concomitantly may increase C sequestration of soils by its potential to bind CO?. The idea of our study was to combine an improved chemical characterisation of ammonoxidised ligneous matter as well as their CO?-binding potential, with laboratory pot experiments, performed to enable an evaluation of their behaviour and stability during the biochemical reworking occurring in active soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号