首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Sodium periodate was characterized as a primary chemical oxidant for the catalytic evolution of oxygen at neutral pH using a variety of water-oxidation catalysts. The visible spectra of solutions formed from Cp*Ir(bpy)SO(4) during oxygen-evolution catalysis were measured. NMR spectroscopy suggests that the catalyst remains molecular after several turnovers with sodium periodate. Two of our [Cp*Ir(bis-NHC)][PF(6)](2) complexes, along with other literature catalysts, such as the manganese terpyridyl dimer, Hill's cobalt polyoxometallate, and Meyer's blue dimer, were also tested for activity. Sodium periodate was found to function only for water-oxidation catalysts with low overpotentials. This specificity is attributed to the relatively low oxidizing capability of sodium periodate solutions relative to solutions of other common primary oxidants. Studying oxygen-evolution catalysis by using sodium periodate as a primary oxidant may, therefore, provide preliminary evidence that a given catalyst has a low overpotential.  相似文献   

2.
[Mn2(III/IV)(mu-O) 2(terpy)2(OH 2)2](NO3)3 (1, where terpy = 2,2':6'2'-terpyridine) acts as a water-oxidation catalyst with HSO5(-) as the primary oxidant in aqueous solution and, thus, provides a model system for the oxygen-evolving complex of photosystem II (Limburg, J.; et al. J. Am. Chem. Soc. 2001, 123, 423-430). The majority of the starting [Mn2(III/IV)(mu-O)2](3+) complex is converted to the[Mn2(IV/IV)(mu-O)2](4+) form (2) during this reaction (Chen, H.; et al. Inorg. Chem. 2007, 46, 34-43). Here, we have used stopped-flow UV-visible spectroscopy to monitor UV-visible absorbance changes accompanying the conversion of 1 to 2 by HSO5(-). With excess HSO5(-), the rate of absorbance change was found to be first-order in [1] and nearly zero-order in [HSO5(-)]. At relatively low [HSO5(-)], the change of absorbance with time is distinctly biphasic. The observed concentration dependences are interpreted in terms of a model involving the two-electron oxidation of 1 by HSO5(-), followed by the rapid reaction of the two-electron-oxidized intermediate with another molecule of 1 to give two molecules of 2. In order to rationalize biphasic behavior at low [HSO5(-)], we propose a difference in reactivity of the [Mn2(III/)(IV)(mu-O)2](3+) complex upon binding of HSO5(-) to the Mn(III) site as compared to the reactivity upon binding HSO5(-) to the Mn(IV) site. The kinetic distinctness of the Mn(III) and Mn(IV) sites allows us to estimate upper limits for the rates of intramolecular electron transfer and terminal ligand exchange between these sites. The proposed mechanism leads to insights on the optimization of 1 as a water-oxidation catalyst. The rates of terminal ligand exchange and electron transfer between oxo-bridged Mn atoms in the oxygen-evolving complex of photosystem II are discussed in light of these results.  相似文献   

3.
In this work the synthesis of the novel manganese complex [Mn(2)(III,III)(tpdm)(2)(μ-O)(μ-OAc)(2)](2+) (1) is reported, containing two manganese centres ligated to the unusual, facially coordinating, all-pyridine ligand tpdm (tris(2-pyridyl)methane). The geometric and electronic properties of complex 1 were characterised by X-ray crystallography, vibrational (IR and Raman) and optical spectroscopy (UV/Vis and MCD). Cyclic voltammograms of 1 showed a quasi-reversible oxidation event at 950 mV and an irreversible reduction wave at -250 mV vs. Ag/Ag(+). The redox behaviour of the compound was investigated in detail by UV/Vis- and X-band EPR-spectroelectrochemistry. Both electrochemical (+1200 mV) and chemical (tBuOOH) oxidations transform 1 into the singly oxidized di-μ-oxido species [Mn(2)(III,IV)(tpdm)(2)(μ-O)(2)(μ-OAc)](2+). Further electrochemical oxidation at the same potential results in the removal of a second electron to obtain a Mn(2)(IV,IV)-species. The ability of compound 1 to evolve O(2) was studied using different reaction agents. While reactions with both hydrogen peroxide and peroxomonosulfate yield O(2), homogeneous water-oxidation using Ce(IV) was not observed. Nevertheless, the oxidation reactions of 1 are very interesting model processes for oxidation state (S-state) transitions of the natural manganese water-oxidation catalyst in photosynthesis. However, despite its favourable coordination geometry and multielectron redox chemistry, complex 1 fails to be a catalytically active model for natural water-oxidation.  相似文献   

4.
This work reveals that photoanodes based on TiNb2O7 (TNO) powder show remarkable water-oxidation properties including nearly ideal charge-transfer and charge-injection efficiencies. Furthermore, using a simplified photoanode construction and carefully surveying the structural and morphological characteristics of oriented and polycrystalline thin films and powder-based samples revealed that the water-splitting kinetics of TNO is negligibly effected by surface morphology; instead, internal grain boundaries likely play a driving role. The current powder-based TNO photoanodes exhibit ideal water-oxidation kinetics and oxidize water at minimal applied biases under illumination; consequently, TNO exhibits an early onset photocurrent voltage (0.4 V vs. RHE) that rivals that of other state-of-the-art photoanode materials.  相似文献   

5.
Oxidation of primary and secondary alcohols has been studied in the presence of [Fe(ind)Cl]2O (1) and [Fe2(OMe)2(PAP)Cl4] (2) (indH = 1,3-bis(2′-pyridylimino)isoindoline; PAP = 1,4-di(2′-pyridyl)aminophthalazine) as catalysts using hydrogen peroxide as primary oxidant. The complexes were found to be suitable catalysts for the oxidation of alcohols to the corresponding carbonyl compounds in acetone as solvent. The reactivity of the alcohols is in the order primary < secondary < cyclic secondary < aromatic. The reaction mechanism in the case of 1 probable involves an iron-based oxidant, while in the case of 2 a free-radical mechanism is suggested.  相似文献   

6.
The palladium-assisted one-pot three-component reactions of aldehydes, amines and olefins proceeded smoothly to give 2,6-unsubstituted 1,4-dihydropyridines (1,4-DHPs) using molecular oxygen as a sole oxidant. It also provides efficient Pd-catalyzed aerobic oxidation access to the anti-Markovnikov oxidative amination products of olefins from primary aromatic amines and alkenes. The method is atom-efficient, using cheap and easily available starting materials and an environmentally benign oxidant.  相似文献   

7.
Potassium perruthenate (KRuO4), a known, effective oxidant for the conversion of primary and secondary alcohols into carbonyl compounds is impregnated into zeolite X and shown to be a shape-selective oxidant using benzyl alcohol (reacted) and pyrenemethanol (not reacted).  相似文献   

8.
Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O(2) as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)Cu(I)/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic, and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups.  相似文献   

9.
Beneath the sheets: (31) P?NMR data suggests that phosphates are liberated freely in the interlayer of a cobalt-hydroxide water-oxidation catalyst. The cobalt-hydroxide sheets are separated by an interlayer region with water, counterions and phosphate, which help to shuttle protons as the layer develops charge.  相似文献   

10.
Catalytic oxidation of secondary amines to nitrones using alkyl hydroperoxides as primary oxidant has been demonstrated for the first time. The titanium alkoxide catalyst is protected from co-product water by the combined use of a tightly binding trialkanolamine ligand and molecular sieves. Nitrones can be obtained in high yield (up to 98%) under homogeneous, anhydrous conditions and even in the absence of solvent. The reactions are fast (2-7 h) and good selectivity can be achieved with as little as 1% catalyst.  相似文献   

11.
1,1,1-Trifluoroacetone (2a) reacts as a hydride-acceptor in the Oppenauer oxidation of secondary alcohols (1) in the presence of diethylethoxyaluminum. The oxidant allows for selective oxidation of secondary alcohols in the presence of primary alcohols.  相似文献   

12.
The ruthenium(II) complex cis-[Ru(6, 6'-Cl(2)bpy)(2)(OH(2))(2)](CF(3)SO(3))(2) (1) is a robust catalyst for C-H bond oxidations of hydrocarbons, including linear alkanes, using tert-butyl hydroperoxide (TBHP) as terminal oxidant. Alcohols can be oxidized by the "1 + TBHP" protocol to the corresponding aldehydes/ketones with high product yields at ambient temperature. Oxidation of 1 with Ce(IV) in aqueous solution affords cis-[Ru(VI)(6, 6'-Cl(2)bpy)(2)O(2)](2+), which is isolated as a green/yellow perchlorate salt (2). Complex 2 is a powerful stoichiometric oxidant for cycloalkane oxidations under mild conditions. Oxidation of cis-decalin is highly stereoretentive; cis-decalinol is obtained in high yield, and formation of trans-decalinol is not observed. Mechanistic studies showing a large primary kinetic isotope effect suggest a hydrogen-atom abstraction pathway. The relative reactivities of cycloalkanes toward oxidation by 2 have been examined through competitive experiments, and comparisons with Gif-type processes are presented.  相似文献   

13.
A highly active and selective Al-based catalytic Oppenauer (O) oxidation is reported. Quantitative and selective oxidations of a variety of benzylic, propargylic, allylic, and aliphatic primary and secondary alcohols were achieved using nitrobenzaldehyde derivatives as the oxidant and simple aluminum compounds as precatalysts.  相似文献   

14.
This review describes the results from X-ray Absorption Spectroscopy studies that have contributed to an understanding of the role of Ca in the photosynthetic water-oxidation reaction. The results include the first Mn, Ca and Sr X-ray spectroscopy studies using Ca or Sr-substituted PS II samples that established the presence of a MnCa heteronuclear structure and its orientation, and the most recent Sr X-ray spectroscopy study using biosynthetically prepared Sr-containing PS II in the various S-states that provide important insights into the requirement for Ca in the mechanism of the Mn(4)Ca catalytic center.  相似文献   

15.
One-pot condensation/oxidation of aldehydes and primary anilines into nitrones using graphite oxide (GO) and Oxone as the oxidant under very mild reaction conditions is described. The proposed method provides a direct oxidative synthesis of various nitrones in good to excellent yields under metal-free conditions in short reaction times.  相似文献   

16.
Primary alcohols undergo efficiently oxidative dimerization by iridium complexes under air without any solvent to form esters in fair to good yields. For instance, the reaction of 1-dodecanol in the presence of [IrCl(coe)2]2 (3 mol %) at 95 °C for 15 h produced dodecyl dodecanoate in 91% isolated yield. This is the first successful Ir-catalyzed oxidative dimerization of primary alcohols to esters using air as an oxidant. Various primary alcohols are converted to the corresponding esters in fair to good yields.  相似文献   

17.
By using [Mn(2,6-Cl(2)TPP)Cl] (1) as a catalyst and Oxone/H(2)O(2) as an oxidant, we have developed an efficient method for erythro-selective epoxidation of acyclic allyl-substituted alkenes, including allylic alcohols, amines, and esters. Up to 9:1 erythro selectivities for terminal allyllic alkenes could be achieved, which are significantly higher than that achieved using m-CPBA as an oxidant. In addition, the synthetic utilities of this epoxidation method were highlighted in stereoselective synthesis of key anti-HIV drug intermediates and epoxidation of glycals.  相似文献   

18.
陶长元  陈静  杜军  孙才新 《电化学》2005,11(2):208-214
分别以过硫酸铵和正钒酸钠作氧化剂,应用膜相渗透原位化学聚合法制备聚苯胺(PAn)/聚四氟乙烯(PTFE)复合导电膜,比较考察了两种氧化剂条件下膜孔中苯胺的聚合生长行为.扫描电镜、孔径分布及电化学测试结果表明:选用两种氧化剂分别制备的复合膜,均具有较小的膜孔径;与过硫酸铵相比,使用正钒酸钠作氧化剂时,复合膜的结构更为致密,且在保持较高表面电导率(2.62S·cm-1)的同时,断面电导率提高了1~2个数量级,电化学活性增强.  相似文献   

19.
The tetraruthenium polyoxometalate [Ru(4)(μ-O)(4)(μ-OH)(2)(H(2)O)(4)(γ-SiW(10)O(36))(2)](10-) (1) behaves as a very efficient water oxidation catalyst in photocatalytic cycles using Ru(bpy)(3)(2+) as sensitizer and persulfate as sacrificial oxidant. Two interrelated issues relevant to this behavior have been examined in detail: (i) the effects of ion pairing between the polyanionic catalyst and the cationic Ru(bpy)(3)(2+) sensitizer, and (ii) the kinetics of hole transfer from the oxidized sensitizer to the catalyst. Complementary charge interactions in aqueous solution leads to an efficient static quenching of the Ru(bpy)(3)(2+) excited state. The quenching takes place in ion-paired species with an average 1:Ru(bpy)(3)(2+) stoichiometry of 1:4. It occurs by very fast (ca. 2 ps) electron transfer from the excited photosensitizer to the catalyst followed by fast (15-150 ps) charge recombination (reversible oxidative quenching mechanism). This process competes appreciably with the primary photoreaction of the excited sensitizer with the sacrificial oxidant, even in high ionic strength media. The Ru(bpy)(3)(3+) generated by photoreaction of the excited sensitizer with the sacrificial oxidant undergoes primary bimolecular hole scavenging by 1 at a remarkably high rate (3.6 ± 0.1 × 10(9) M(-1) s(-1)), emphasizing the kinetic advantages of this molecular species over, e.g., colloidal oxide particles as water oxidation catalysts. The kinetics of the subsequent steps and final oxygen evolution process involved in the full photocatalytic cycle are not known in detail. An indirect indication that all these processes are relatively fast, however, is provided by the flash photolysis experiments, where a single molecule of 1 is shown to undergo, in 40 ms, ca. 45 turnovers in Ru(bpy)(3)(3+) reduction. With the assumption that one molecule of oxygen released after four hole-scavenging events, this translates into a very high average turnover frequency (280 s(-1)) for oxygen production.  相似文献   

20.
Molecular water-oxidation catalysts can deactivate by side reactions or decompose to secondary materials over time due to the harsh, oxidizing conditions required to drive oxygen evolution. Distinguishing electrode surface-bound heterogeneous catalysts (such as iridium oxide) from homogeneous molecular catalysts is often difficult. Using an electrochemical quartz crystal nanobalance (EQCN), we report a method for probing electrodeposition of metal oxide materials from molecular precursors. Using the previously reported [Cp*Ir(H(2)O)(3)](2+) complex, we monitor deposition of a heterogeneous water oxidation catalyst by measuring the electrode mass in real time with piezoelectric gravimetry. Conversely, we do not observe deposition for homogeneous catalysts, such as the water-soluble complex Cp*Ir(pyr-CMe(2)O)X reported in this work. Rotating ring-disk electrode electrochemistry and Clark-type electrode studies show that this complex is a catalyst for water oxidation with oxygen produced as the product. For the heterogeneous, surface-attached material generated from [Cp*Ir(H(2)O)(3)](2+), we can estimate the percentage of electroactive metal centers in the surface layer. We monitor electrode composition dynamically during catalytic turnover, providing new information on catalytic performance. Together, these data suggest that EQCN can directly probe the homogeneity of molecular water-oxidation catalysts over short times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号