首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on a study of the temperature dependences of the electrical resistivity, Hall coefficient, and thermopower of nanoporous carbon prepared from polycrystalline carbides (α-SiC, TiC, Mo2C) and 6H-SiC single crystals in the temperature range 1.5–300 K. The structural units responsible for the character of charge transport in these materials are carbon nanoclusters measuring ~10–30 Å. The conductivity in all the samples studied was found to be p type with a high carrier concentration (nh ~ 1020 cm?3). The behavior of the transport coefficients at low temperatures is discussed.  相似文献   

2.
The electrical conductivity σa and permittivities ?a, ?b, and ?c of a LiCuVO4 single crystal have been measured along the a, b, and c crystallographic axes, respectively, in the temperature range 300–390 K at a frequency of 103 Hz. The temperature dependences σ(T) and ?(T) were found to be typical for superionics.  相似文献   

3.
This paper reports on measurements of the thermal conductivity κ and the electrical conductivity σ of high-porosity (cellular pores) biocarbon precursors of white pine tree wood in the temperature range 5–300 K, which were prepared by pyrolysis of the wood at carbonization temperatures (T carb) of 1000 and 2400°C. The x-ray structural analysis has permitted the determination of the sizes of the nanocrystallites contained in the carbon framework of the biocarbon precursors. The sizes of the nanocrystallites revealed in the samples prepared at T carb = 1000 and 2400°C are within the ranges 12–35 and 25–70 Å, respectively. The dependences κ(T) and σ(T) are obtained for samples cut along the tree growth direction. As follows from σ(T) measurements, the biocarbon precursors studied are semiconducting. The values of κ and σ increase with increasing carbonization temperature of the samples. Thermal conductivity measurements have revealed that samples of both types exhibit a temperature dependence of the phonon thermal conductivity κph, which is not typical of amorphous (and amorphous to x-rays) materials. As the temperature increases, κph first varies proportional to T, to scale subsequently as ~T 1.7. The results obtained are analyzed.  相似文献   

4.
The cooperative phenomena revealed in the field and temperature dependences of the magnetization in a system of iron nanoparticles in carbon nanotubes were studied experimentally. The character of the temperature dependences of the magnetization indicates that the ferromagnetic Fe particles in carbon nanotubes are exchange-coupled. In the region where the magnetization approaches saturation, the magnetization curves reveal the power dependence ΔMH?3/2 typical for a one-dimensional system of exchange-coupled ferromagnetic nanoparticles.  相似文献   

5.
The conductivity and magnetic susceptibility of disordered titanium monoxide TiOy (0.920≤y≤1.262) containing vacancies in titanium and oxygen sublattices are investigated. For TiOy monoxides with an oxygen content y≤1.069, the temperature dependences of the conductivity are described by the Bloch-Grüneisen function at a Debye temperature ranging from 400 to 480 K and the temperature dependences of the magnetic susceptibility are characterized by the contribution from the Pauli paramagnetism due to conduction electrons. The behavior of the conductivity and magnetic susceptibility of TiOy monoxides with an oxygen content y≥1.087 is characteristic of narrow-gap semiconductors with nondegenerate charge carriers governed by the Boltzmann statistics. The band gap ΔE between the valence and conduction bands of TiOy monoxides with y≥1.087 falls in the range 0.06–0.17 eV.  相似文献   

6.
The temperature and magnetic-field dependences of the heat capacity, thermal conductivity, thermopower, and electrical resistivity of the Sm0.55Sr0.45MnO3.02 ceramic material are studied in the temperature range 77–300 K and in magnetic fields up to 26 kOe. It is revealed that the quantities under investigation exhibit anomalous behavior due to a magnetic phase transition at the Curie temperature TC. An increase in the magnetic field strength H leads to an increase in the Curie temperature TC and a jump in the heat capacity ΔCp at TC. The temperature dependences of the measured quantities are characterized by hystereses that are considerably suppressed in a magnetic field of 26 kOe and depend neither on the thermocycling range nor on the rate of change in the temperature. The thermal conductivity K at temperatures above TC shows unusual behavior for crystalline solids (dK/dT>0) and, upon the transition to a ferromagnetic state, drastically increases as a result of a decrease in the phonon scattering by Jahn-Teller distortions. It is demonstrated that the hystereses of the studied properties of the Sm0.55Sr0.45MnO3.02 manganite are caused by a jumpwise change in the critical temperature due to variations in the lattice parameters upon the magnetic phase transition.  相似文献   

7.
This paper reports on comparative investigations of the structural and electrical properties of biomorphic carbons prepared from natural beech wood, as well as medium-density and high-density fiberboards, by means of carbonization at different temperatures T carb in the range 650–1000°C. It has been demonstrated using X-ray diffraction analysis that biocarbons prepared from medium-density and high-density fiberboards at all temperatures T carb contain a nanocrystalline graphite component, namely, three-dimensional crystallites 11–14 Å in size. An increase in the carbonization temperature T carb to 1000°C leads to the appearance of a noticeable fraction of two-dimensional graphene particles with the same sizes. The temperature dependences of the electrical resistivity ρ of the biomorphic carbons have been measured and analyzed in the temperature range 1.8–300 K. For all types of carbons under investigation, an increase in the carbonization temperature T carb from 600 to 900°C leads to a change in the electrical resistivity at T = 300 K by five or six orders of magnitude. The dependences ρ(T) for these materials are adequately described by the Mott law for the variable-range hopping conduction. It has been revealed that the temperature dependence of the electrical resistivity exhibits a hysteresis, which has been attributed to thermomechanical stresses in an inhomogeneous structure of the biocarbon prepared at a low carbonization temperature T carb. The crossover to the conductivity characteristic of disordered metal systems is observed at T carb ? 1000°C.  相似文献   

8.
The electrical conductivity σ and dielectric properties (?, tanδ) of β-BaB2O4 were studied in the temperature range 90–300 K. The quantities σ, ?, and tanδ were measured at frequencies of 0.1, 1, and 10 kHz and 1 MHz. The dielectric permittivity and electrical conductivity were found to grow with increasing temperature at all frequencies. The permittivity decreases and the electrical conductivity increases (by several orders of magnitude) with increasing frequency. Maxima were observed in the σ=f(T) and tanδ=f(T) curves for all frequencies; the maxima shift toward higher temperatures with increasing frequency.  相似文献   

9.
10.
The thermal conductivity k and resistivity ρ of biocarbon matrices, prepared by carbonizing medium-density fiberboard at T carb = 850 and 1500°C in the presence of a Ni-based catalyst (samples MDF-C( Ni)) and without a catalyst (samples MDF-C), have been measured for the first time in the temperature range of 5–300 K. X-ray diffraction analysis has revealed that the bulk graphite phase arises only at T carb = 1500°C. It has been shown that the temperature dependences of the thermal conductivity of samples MDFC- 850 and MDF-C-850(Ni) in the range of 80–300 K are to each other and follow the law of k(T) ~ T 1.65, but the use of the Ni-catalyst leads to an increase in the thermal conductivity by a factor of approximately 1.5, due to the formation of a greater fraction of the nanocrystalline phase in the presence of the Ni-catalyst at T carb = 850°C. In biocarbon MDF-C-1500 prepared without a catalyst, the dependence is k(T) ~ T 1.65, and it is controlled by the nanocrystalline phase. In MDF-C-1500(Ni), the bulk graphite phase formed increases the thermal conductivity by a factor of 1.5–2 compared to the thermal conductivity of MDF-C-1500 in the entire temperature range of 5–300 K; k(T = 300 K) reaches the values of ~10 W m–1 K–1, characteristic of biocarbon obtained without a catalyst only at high temperatures of T carb = 2400°C. It has been shown that MDF-C-1500(Ni) in the temperature range of 40?300 K is characterized by the dependence, k(T) ~ T 1.3, which can be described in terms of the model of partially graphitized biocarbon as a composite of an amorphous matrix with spherical inclusions of the graphite phase.  相似文献   

11.
The properties of materials containing carbon nanotubes depend on the degree of alignment and the internal structure of nanotubes. It is shown that the degree of misorientation of carbon nanotubes in samples can be evaluated from the measurements of the angular dependences of the carbon X-ray emission and carbon X-ray absorption spectra. The CK α emission and CK X-ray absorption spectra of the array of multiwalled carbon nanotubes synthesized by catalytic thermolysis of a mixture of fullerene and ferrocene are measured. A comparison of the calculated model dependences of the relative intensities of the π and σ bands in the spectra with the experimental results makes it possible to evaluate the degree of misorientation of nanotubes in the sample and their internal texture.  相似文献   

12.
The problem of establishing the correlation between, on the one hand, the chemical and phase compositions of Ni1–xWx alloys (0 ≤ x ≤ 0.5) and, on the other hand, the character of the temperature dependences of the electrical resistivity, is considered. Based on the experimental ρ(T) curves, the concentration dependences of are reconstructed in the wide temperature range (50 K ≤ T ≤ 273 K). The ρ(x) curves have features related to a change in the crystal structures of the alloys (concentration fcc–bcc phase transition), their magnetic structures and percolation processes occurring in the two-phase fcc + bcc medium.  相似文献   

13.
The temperature behavior of I-U curves and the field and temperature dependences of the electrical resistivity and dielectric permittivity of crystals of the LiCu2O2 phase have been studied. It was established that the crystals belong to p-type semiconductors and that their static resistivity in the range 80–260 K follows the Mott law ρ=Aexp(T0/T)1/4 describing variable-range hopping over localized states. At comparatively low electric fields, the crystals exhibit threshold switching and characteristic S-shaped I-U curves containing a region of negative differential resistivity. In the critical voltage region, jumps in the conductivity and dielectric permittivity are observed. Possible mechanisms of the disorder and electrical instability in these crystals are discussed.  相似文献   

14.
The electrical resistivity of Sapele-based biomorphic SiC/Si materials was measured in a wide temperature range from 10 K to room temperature. The samples were fabricated by the reactive infiltration of molten silicon into a carbonized Sapele (African Entandrophragma Cylindricum) wood preform. All the samples studied contained residual Si (10–35 wt %). It was found that the resistivity-temperature (ρ(T)) dependences have semimetallic behavior which becomes very close to linear metallic behavior at 100 < T < 300 K. The obtained values of resistivity were quite low (ρ ≈ 0.002–0.02 Ω cm) and showed strong anisotropy: the resistivity along the wood growth axis was several times lower than that in the perpendicular direction. The extent of this anisotropy was in correlation with the amount of residual Si (and, hence, with the amount of residual porosity) in a sample. The resistivity perpendicular to the wood growth axis drastically increased with the Si content, whereas the resistivity parallel to it was practically independent of the Si content. It is suggested that the presence of residual carbon in the samples and carrier scattering at SiC/Si interphases could determine the observed character of ρ(T) dependences.  相似文献   

15.
The electrical resistivity ρ(T) of the band ferromagnets Co2FeZ (where Z = Al, Si, Ga, Ge, In, Sn, and Sb are s- and p-elements of Mendeleev’s Periodic Table) has been investigated in the temperature range 4.2 K < T < 1100 K. It has been shown that the dependences ρ(T) of these alloys in a magnetically ordered state at temperatures T < T C are predominantly determined by the specific features of the electronic spectrum in the vicinity of the Fermi level. The processes of charge carrier scattering affect the behavior of the electrical resistivity ρ(T) only in the vicinity of the Curie temperature T C and above, as well as in the low-temperature range (at T ? T C).  相似文献   

16.
Orientational, dispersion, and temperature dependences of electro-optical coefficients of Li-doped ZnO single crystals are investigated. According to the data on the orientational dependences obtained far from the electronic absorption band, the values of all linearly independent components of the Pockels tensor are specified. In the range from 2 eV to E g , at both 100 and 300 K, the dispersion obeys a power law with m=2, which indicates a two-dimensional character of the van Hove singularity. The anomalies in the temperature dependences in the range from 15 to 700 K are explained by the competing contributions of the anharmonicities of the electron and lattice subsystems, which lead to anomalous behavior of the coefficients at both low (T < 100 K) and high (T > 100 K) temperatures. In the low-temperature range, the identified anomalies correlate with data of independent measurements of birefringence, spontaneous polarization, and dilatometry.  相似文献   

17.
Tm x Cu3V4O12, a perovskite-like oxide (space group, Im-3; Z = 2; a = 7.279–7.293 Å) containing vacancies in its cationic sublattice, was obtained barothermally (P = 7.0–9.0 GPa, t = 1000–1100°C) for the first time. The temperature dependences on the electrical resistivity (10–300 K) and the magnetic susceptibility (0–300 K) were investigated. It was shown that the oxide Tm x Cu3V4O12 is characterized by metal-type conductivity and paramagnetic properties.  相似文献   

18.
The refractive (n) and absorption (k) indices of intermetallic DyNi5 ? x Al x compounds (x = 0, 0.5, 1, 1.5, 2) have been measured by ellipsometry at room temperature in the spectral range of 0.22–15 μm. It is established that the replacement of nickel by aluminum atoms leads to significant changes in the dispersion relations of the optical conductivity σ(E) in the interband absorption range. With an increase in Al content, the spectrum σ(E) (containing three maxima for DyNi5) is gradually transformed into a single-peak structure. The results obtained are discussed on the basis of the data on the electronic spectrum of these compounds. Concentration dependences of the plasma and relaxation frequencies of conduction electrons are determined.  相似文献   

19.
The temperature dependences of the heat capacity (C p ) and the thermal conductivity (κ) in the temperature range from 300 to 773 K of polycrystalline gadolinium sulfide samples (γ-GdS y ) with the deviation of the composition from the integer stoichiometric were studied. It was found that the thermal conductivity of gadolinium sulfides decreases monotonically and reaches 0.74 W/(m K) at T = 773 K for the composition y = 1.479, which is much lower than for the known single-crystal samples. The influence of morphological defects (boundaries of crystallites and dislocations) on the intensity of scattering of phonons is studied. It has been established that ceramic samples of gadolinium sulphides have a large heat capacity and a lower thermal conductivity, in comparison with monocrystalline samples of the same composition.  相似文献   

20.
A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model (T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号