首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absolute rate constant of the reaction of NH2 with NO2 has been measured using a flash-photolysis laser resonance-fluorescence technique. The value obtained at room temperature is k1 = 2.3 (± 0.2) × 10?11 cm3 molecule ?1 s?1. A negative temperature coefficient has been found between 298 and 505 K for this reaction, k1 = 3.8 × 10?8 × T?1.30 cm3 molecule?1 s?1. It is thought that this is the major reaction of NH2 in the troposphere.  相似文献   

2.
NH2 profiles were measured in a discharge flow reactor at ambient temperature by monitoring reactants and products with an electron impact mass spectrometer. At the low pressures used (0.7 and 1.0 mbar) the gas-phase self-reaction is dominated by a ‘bimolecular’ H2-eliminating exit channel with a rate coefficient of k3b(300 K) = (1.3 ± 0.5) × 10−12 cm3 molecule−1 s−1 and leading to N2H2 + H2 or NNH2 + H2. Although the wall loss for NH2 radicals is relatively small (kw ≈ 6–14 s−1), the contribution to the overall NH2 decay is important due to the relatively slow gas-phase reaction. The heterogeneous reaction yields N2H4 molecules.  相似文献   

3.
The decay of NH2 radicals, from 193 nm photolysis of NH3, was monitored by 597.7 nm laser-induced fluorescence. Room-temperature rate constants of (1.21 ± 0.14) × 10?10, (1.81 ± 0.12) × 10?11, and (2.11 ± 0.18) × 10?11 cm3 molecule?1 s?1 were obtained for the reactions of NH2 with N, NO and NO2, respectively. The production of NH in the reaction of NH2 with N was observed by laser-induced fluorescence at 336.1 nm.  相似文献   

4.
The rate constant for the reaction NH3 + OH → NH2 + H2O was determined by the comparison of the calculated induction period data with experiments by the shock tube technique in the range 1360–1840 K, for NH3-H2-O2-Ar mixtures. The rate constants can be represented by the expression k = 1012.49±0.04exp[(?1.95±0.15) kcal/,RT] cm3 mol?1 s?1.  相似文献   

5.
The kinetics of the reaction NH2 + NO → N2 + H2O were studied, using a conventional flash photolysis system. A value of k1 = (1.1 ± 0.2) × 1010 & mole?1 s?1 was obtained at room temperature and in the pressure range 2–700 torr in the presence of nitrogen. A slight negative temperature coefficient was observed between 300 and 500 K, equivalent to a negative activation energy of 1.05 ± 0.2 kcal mole?1.  相似文献   

6.
A photoelectron-photoion coincidence technique is used to measure the internal-energy dependence of the ion-molecule reaction NH3+(Eint+NH3 → NH4+ + NH2 at thermal collision energy. The range in which the internal energy is varied, is enlarged by including in the experiment the electronically excited state of the NH3+ ion. Special attention is paid to the possible influence of the product's kinetic energy on the measurements. The experimental results are analysed using a modified statistical model and compared with previous data.  相似文献   

7.
The rate constant for the reaction or NH3 + OH → NH2 + H2O has been measured in a high temperature fast flow reactor over the range 294–1075 K k = (5.41 ± 0.86) × 10-12 exp[?(2120 ± 143) cal mole?1/RT cm3 molecule?1 s?1. This result is compared with literature values and discussed.  相似文献   

8.
The absolute thermal rate coefficient for the reaction NH3+ + NH3 → NH4+ + NH2 has been determined experimentally for the first time for NH3+ (ν = 0) reactant ions. An increase in Evib results in a decrease in the rate coefficient for proton transfer.  相似文献   

9.
Gaseous products evolved from (NH4)2SO4, NH4HSO4 and NH4NH2SO3 during successive heating and cooling cycles were flushed with inert gas into analyzer Dräger tubes hooked tightly to the terminal port of the DSC cell base. This simple procedure allowed the starting temperature of the decomposition to be determined and the amount of the individual gases in the mixture to be identified and even estimated. NH4NH2SO3 at 523 K in humid air produced HNH2SO3 initially and, on further cycling, (NH4)2SO4 and NH4HSO4 also appeared. The ΔHf values for NH4HSO4 were (kJ mole?1): in an airtight sample holder 12.67, in a dry argon atmosphere 11.93, and in a static air atmosphere 10.92. Endothermic peaks for (NH4)2SO4 and 498 and 411 K represented the incongruent melting point and the polymorphic transition of (NH4)2SO4·NH4HSO4. After the first heating in air to 530 K, (NH4)2SO4 and NH4HSO4 exhibited closely similar cyclic DSC curves. The endothermic peaks at about 393–420 K may be assigned to different combinations of (NH4)2SO4 and NH4HSO4.  相似文献   

10.
Laser induced fluorescence from the Ã2A1 state of the NH2 radical, obtained by different methods, has been observed with a tunable cw dye laser as excitation source. Using pulsed photolysis of NH3 to produce NH2, the fluorescence technique has been employed in a first gas kinetic application to measure the rate constant of the aeronomically interesting NH2 + NO reaction at 298 K. A value of (2.1 ± 0.2) × 10-11 cm3 molecule-1 s-1 has been obtained.  相似文献   

11.
A re-interpretation and re-evaluation of single-crystal X-ray diffraction data of a previously reported ‘(NH4)2(NH3)[Ni(NH3)2Cl4]’ (J. Solid State Chem. 162 (2001) 254) give a new formula (NH4)2−2z[Ni(NH3)2]z[Ni(NH3)2Cl4] with z=0.152. This new formula results from defects in an idealized ‘(NH4)2[Ni(NH3)2Cl4]’ basic structure, where two adjacent NH4+ cations are replaced by one Ni(NH3)22+ unit. Cl anions from the basic structure complete the coordination sphere of the new Ni2+ to [Ni(NH3)2Cl4]2−.  相似文献   

12.
NH3 atmosphere in ball milling plays an important role in preparing TiO2−XNX by a simple mechanochemical reaction. The results show that the structure transformation of titania milled in NH3 is greatly delayed compared with that in air. The specific surface area of titania milled in NH3 for 2 h is two times larger than that in air. It was also found that titania prepared in NH3 has obvious absorbance for visible light. Mechanochemical milling in NH3 atmosphere offers a new route to prepare TiO2−XNX with high surface area.  相似文献   

13.
Using ab initio CI calculations we have evaluated the structural, energetic and kinetic parameters of the reaction between NH2 and NO. In light of the results obtained, it appears that while the formation of molecular nitrogen is highly probable, the reaction pathway leading to N2H+OH cannot be thermodynamically excluded. The kinetic model based on the RRKM and TST methods leads to a calculated rate constant at 298 K (k = 1.64×10−11 cm3 molecule−1 s−1) which is comparable to that determined experimentally and which decreases with temperature in the range 200–700 K.  相似文献   

14.
Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO?NH3+NCO (1) and NH2+HNCO?N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300–2700 K, transition theory rate constant for reaction (1) is 1.68×1011–3.29×1011 mL·mol-1·s-1, which is close to the experimental one of 5.0×1011mL·mol-1·s-1or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes,cis andtrans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (forcis-mode) and 147.43 kJ/mol (fortrans-mode), respectively, which is much higher than reaction (1). So reaction (1) is the main channel for the titled reaction.  相似文献   

15.
The mechanism of the SO2 + HO2 reaction was studied theoretically for the first time. Three product channels were revealed, namely, O2 + HOSO, O2 + HSO2, and OH + SO3. The O2 + HOSO channel dominates the reaction under combustion conditions. A five-member-ring complex [SO2–HO2] exists at the entrance of the reaction. The structure and binding energy (De and D0) of the SO2–HO2 complex have been calculated. In view of D0 = 21.2 ± 2.0 kJ mol−1, the SO2–HO2 complex should be stable at low temperature. The infrared spectra and frequency shifts were calculated for both SO2–HO2 and SO2–DO2, and compared with the available experimental data.  相似文献   

16.
The heat capacity due to the hindered rotation of the ammonium ion has been computed for (NH4)2SiF6 and (NH4)2SnCl6 and compared to that derived from the observed heat capacity. The torsional frequencies for (NH4)2SiF6 and (NH4)2SnCl6 are 226 cm?1 and 190 cm?1 respectively, and the barriers to rotation are 3210 calories/mole and 1470 calories/mole, respectively.  相似文献   

17.
The thermal behaviour of (NH4)3VO2F4 and Na(NH4)2VO2F4 was investigated using TG, DTA and DSC techniques. The occurrence of a first order phase transition with the onset of decomposition in both the compounds is confirmed. The temperature, energetics and hysteresis of the transition are obtained. A possible path for the thermal degradation is given for both the compounds, and the residues are identified.  相似文献   

18.
19.
Raman and FTIR spectra of guanidinium zinc sulphate [C(NH2)3]2Zn(SO4)2 are recorded and the spectral bands assignment is carried out in terms of the fundamental modes of vibration of the guanidinium cations and sulphate anions. The analysis of the spectrum reveals distorted SO42− tetrahedra with distinct S–O bonds. The distortion of the sulphate tetrahedra is attributed to Zn–O–S–O–Zn bridging in the structure as well as hydrogen bonding. The CN3 group is planar which is expressed in the twofold symmetry along the C–N (1) vector. Spectral studies also reveal the presence of hydrogen bonds in the sample. The vibrational frequencies of [C(NH2)3]2 and HC(NH2)3 are computed using Gaussian 03 with HF/6-31G* as basis set.  相似文献   

20.
?H2 radical trapped in various ammonia matrices has been investigated by ESR spectroscopy. From the study of the coupling tensors of the ?H2 radical in a single crystal of NH3, and taking into account the motions of this radical, it is shown that for all these matrices the spectra can be interpreted on the basis of coupling tensors which give for all cases the same isotropic coupling constants: aN = 11.3 G, aH = 24.6 G. Nitrogen and hydrogen coupling tensors for the motionless ?H2 radical are also discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号