首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase equilibria in the reciprocal system 3Tl2S + Sb2Se3 ? 3Tl2Se + Sb2S3 are investigated by DTA, X-ray powder diffraction, and emf measurements. Some polythermal sections, the isothermal section of the phase diagram at 400K, and the liquidus-surface projection for this system are constructed. The types and coordinates of invariant and univariant equilibria are determined. It is shown that the system is non-diagonal. Broad regions of solid solutions are found on the basis of the binary compounds Tl2S and Tl2Se and along the boundary system Sb2S3-Sb2Se3 and the sections Tl3SbS3-Tl3SbSe3, TlSbS2-TlSbSe2, and TlSb3S5-TlSb3Se5 of the phase diagram.  相似文献   

2.
The structure of tri-μ2-disulfido-μ3-thiotris(diethyldithiocarbamato)-S,S′-triangle-trimolybdenum iodide [Mo33-S)(μ2-S2)3(Et2NCS2)3]I was determined. The compound was characterized by differential thermal analysis and IR, Raman, and X-ray electronic spectroscopy.  相似文献   

3.
The structure of [Pb3(OH)4Co(NO2)3](NO3)(NO2)·2H2O is determined by single crystal X-ray diffraction. The crystallographic characteristics are as follows: a = 8.9414(4) Å, b = 14.5330(5) Å, c = 24.9383(9) Å, V = 3240.6(2) Å3, space group Pbca, Z = 8. The Co(III) atoms have a slightly distorted octahedral coordination formed by three nitrogen atoms belonging to nitro groups (Co–Nav is 1.91 Å) and three oxygen atoms belonging to hydroxyl groups (Co–Oav is 1.93 Å). The hydroxyl groups act as μ3-bridges between the metal atoms. The geometric characteristics are analyzed and the packing motif is determined.  相似文献   

4.
The boundaries of the glass formation region in the ternary system La2O3–As2S3–Er2O3 were found. Transparent glass of composition (La2O3)0.03(As2S3)0.90(Er2O3)0.07 was studied by X-ray photoelectron and Raman spectroscopy. The intensities of the bands characterizing As–S, La–O, and Er–O bonds increased, and these bands were shifted toward higher energies. This was due to an increase in the covalence of these bonds and probably due to the formation of new bonds in the glasses. Samples in the glass formation region are resistant at 300 K to air, water, and organic solvents.  相似文献   

5.
Single crystals of Ba3[UO2(C2O4)2(NCS)]2 · 9H2O are synthesized and studied by X-ray diffraction. The crystals are orthorhombic, space group Fddd, Z = 16, and the unit cell parameters are a = 16.253(3) Å, b = 22.245(3) Å, c = 39.031(6) Å. The main crystal structural units are mononuclear complex groups [UO2(C2O4)2NCS]3? of the crystal-chemical family (AB 2 01 M1 (A = UO 2 2+ , B01 = C2O 4 2? , M1 = NCS?) of the uranyl complexes linked into a three-dimensional framework by electrostatic interactions and hydrogen bonds involving oxalate ions and water molecules.  相似文献   

6.
The complex Na3(NH4)2[Ir(SO3)2Cl4]·4H2O was examined with single crystal X-ray diffraction and IR spectroscopy. Crystal data: a = 7.3144(4) Å, b = 10.0698(5) Å, c = 12.3748(6) Å, β = 106.203(1)°, V = 875.26(8) Å3, space group P21/c, Z = 2, d calc = 2.547 g/cm3. In the complex anion two trans SO 3 2? groups are coordinated to iridium through the S atom. The splitting of O-H bending vibrations of crystallization water molecules and N-H ones of the ammonium cation is considered in the context of different types of interactions with the closest neighbors in the structure.  相似文献   

7.
8.
Composite solid electrolytes were synthesized from the organic salt dimethylammonium chloride (1–x)C2H8NCl–xAl2O3. Their physicochemical properties were studied. In the starting C2H8NCl salt, there is a phase transition at 39°C accompanied by an increase in conductivity by two orders of magnitude. The conductivity of the high-temperature phase is 9.3 × 10–6 S/cm at 160°C. A differential scanning calorimetry study showed that the salt in the composites spreads over the oxide surface and at x > 0.6 the salt melting enthalpy decreases to zero. The conductivity of the resulting composites was studied by impedance spectroscopy. It was shown that heterogeneous doping leads to a sharp increase in ion conductivity to 7.0 × 10–3 S/cm at 160°C and a decrease in the activation energy to 0.55 eV.  相似文献   

9.
Single crystal X-ray diffraction study of glycine phosphite C2H5NO2·H3PO3 was performed (monoclinic, space group P21/c, a = 7.401(3) Å, b = 8.465(3) Å, c = 9.737(3) Å; β = 100.73(5)°, Z = 4). It has been found that one of hydrogen atoms is located at the centre of symmetry forming two strong hydrogen bonds to yield H4P2O 6 ?2 dimers, while another hydrogen atom is statistically disordered over two positions and organizes the dimers into an infinite corrugated chain. The ordering of this hydrogen atom position and/or displacement of the other one from the centre of symmetry will lead to the loss of symmetry centre and lowering of the point group symmetry from C2h to piezo-active group C2 or C s .  相似文献   

10.
The glass formation in the Al2(SO4)3–(CH3)2SO–H2O system was found for the first time. The competitive ability of ligands, dimethyl sulfoxide and water (which are strong donors), for entering the first coordination sphere of aluminum is considered. The possibility of mixed coordination of (CH3)2SO (via sulfur and oxygen atoms) in the first coordination sphere of aluminum with retention of the glass-forming ability of the sample was suggested on the basis of IR spectral study.  相似文献   

11.
The crystal structure of a double complex salt of the composition [Au(en)2]2[Cu(C2O4)2]3·8H2O (en = ethylenediamine) at 150 K is determined by single crystal X-ray diffraction. The crystal data for C20H48Au2Cu3N8O32 are: a = 9.1761(3) Å, b = 16.9749(6) Å, c = 13.4475(5) Å, β = 104.333(1)°, V = 2029.43(12) Å3, P21/c space group, Z = 2, d x = 2.450 g/cm3. It is demonstrated that the thermal decomposition of the double complex salt in a helium or hydrogen atmosphere affords the solid solution Au0.4Cu0.6.  相似文献   

12.
In the present work, Dy2O3 and Sm2O3 double-doped Bi2O3-based materials are synthesized by exploiting the solid-state synthesis method. The structural and temperature dependent electrical properties of these ternary ceramic samples, which are candidate materials for solid oxide fuel cell (SOFCs) electrolyte, are determined by means of a powder X-ray diffractometer (XRD), the four point-probe method (FPPM), and the thermal-gravimetry/differential thermal analysis (TG/DTA). As a result of the XRD measurements, the fluorite-type fcc δ-phase with a stable structure is obtained for higher values of the dopant oxide material, which are the samples with the maximum content of fixed 20% Dy2O3 and 15% and 20% Sm2O3. The samples with the stable δ-phase structure have higher conductivities. The highest electrical conductivity is found for the (Bi2O3)0.6(Dy2O3)0.2(Sm2O3)0.2 sample, which was 2.5×10–2 (Ohm cm)–1 at 750 °C. The activation energies are also calculated from the Arrhenius charts, which were determined from the FPPM measurements. The lowest activation energy is found as 0.85 eV for the sample with the highest electrical conductivity.  相似文献   

13.
The sequence of phases appearance during the formation of Bi1–xNdxFeO3 solid solutions in powder oxides mixtures of bismuth, neodymium, and iron has been determined. It has been shown that the closeness of the reaction mixture composition to that of the individual compound (BiFeO3 or NdFeO3) is essential for the realization of the series of phase transformations yielding solid solutions of multiferroics Bi1–xNdxFeO3 as the final product, due to the prevalence of various interphase contacts in the starting reaction zone.  相似文献   

14.
The complex [(HOCH2)3CNH3] 2 + [HgI4]2? (I) was synthesized by reacting (trioxymethyl)methylammonium iodide with mercury dioide (2: 1 mol/mol) in acetone. X-ray crystallography shows that the complex consists of two types of crystallographically independent [(HOCH2)3CNH3]+ cations and tetrahedral anions [HgI4]2? (IHgI, 106.49(2)°–113.99(4)°; Hg-I, 2.7849(8)-2.8105(8) Å. [(HOCH2)3CNH3]+ cations are linked via hydrogen bonds O…H-N and O-H…N (O…N, 2.84–2.92 Å) to form polymer chains, which are cross-linked with one another via anions (I…H, 2.81, 2.82 Å).  相似文献   

15.
Single crystals of Cs[(UO2)2(C2O4)2(OH)] · H2O were synthesized and structurally studied using X-ray diffraction. The compound crystallizes in monoclinic space group P21/m, Z = 2, with the unit cell parameters a = 5.5032(4) Å, b = 13.5577(8) Å, c = 9.5859(8) Å, β = 97.012(3)°, V = 709.86(9) Å3, R = 0.0444. The main building units of crystals are [(UO2)2(C2O4)2(OH)]? layers of the A2K 2 02 M2 (A = UO 2 2+ , K02 = C2O 4 2? , and M2 = OH?) crystal-chemical family. Uranium-containing layers are linked into a three-dimensional framework via electrostatic interactions with outer-sphere cations and hydrogen bonds with water molecules.  相似文献   

16.
The binary system KVO3–K2CrO4 and two ternary systems, LiBr–LiVO3–Li2CrO4 and KBr–KVO3–K2CrO4, were studied. In the ternary systems, the compositions and melting points of eutectic alloys were determined by differential thermal analysis: (49.0 mol % LiBr, 5.0 mol % LiVO3, 46.0 mol % Li2CrO4, 400°C) and (17.0 mol % KBr, 78.0 mol % KVO3, 5.0 mol % K2CrO4, 458°C), respectively.  相似文献   

17.
The effects caused by modifying additives, namely nonionic surfactants (Tween 80 and Neonol AF 9-6) and oxides (B2O3 and HfO2), on the rheology, film formation, and phase formation in the yttrium aluminum silicate system prepared by sol–gel technology were studied. The effect of 1 wt % HfO2 additions on the activation energy of crystallization was studied.  相似文献   

18.
In this study, mechanical activation process was used for intimate mixing as well as producing finely ground particles, increased surface area and improved chemical reactivity of milled materials for producing SrTiO3 from commercially pure strontium carbonate and TiO2 as a contributive process. Characterization of milled powder mixture by X-ray diffraction analysis showed that disappearing, decreasing and/or shifting of the patterns occurred with mechanical activation that means amorphization was taken place. Amorphization was also demonstrated by FT-IR analysis where shift of band centers as well as the decrement of transmittance related to CO3 was observed. Advantage of amorphization was established with high-temperature XRD analysis which showed 1300 °C was not enough for non-activated mixture to form SrTiO3, whereas structure only composed of SrTiO3 at 1000 °C for activated ones. The reason for this phenomenon was investigated by DTA-TG analysis, and it was based on energy accumulation originated from mechanical activation that corresponds to peak temperature shifting to the lower temperatures and CO2 liberation at mechanical activation step arising from local temperature rising at the vial during high-energy milling that was understood from peak temperature, and area decrement of endothermic peak corresponds to decomposition of SrCO3.  相似文献   

19.
Aqueous solutions of La(CH3CO2)3, NaCH3CO2 and La(ClO4)3 were studied using Raman spectroscopy. In dilute NaCH3CO2 solution, acetate is fully hydrated and forms only minor amounts of ion pairs. The characteristic Raman bands are discussed and assigned. In fairly dilute La(ClO4)3 solutions, the La3+(aq) ion occurs as the nonahydrate. The separation of the carboxylate bands, νas – νs (Δ-value), in NaCH3CO2(cr) compared to La(CH3CO2)3·1.5H2O(cr) correlates with the bonding type of acetate which is “ionic” in the former but bidentate chelating/tridentate chelating in the latter. Other acetate bands such as the deformation mode of the CO2 moiety, δ CO2, and the two rocking vibrations (ρ), as well as the C–C stretch show marked differences in their band positions in NaCH3CO2(cr) compared to the ones in La(CH3CO2)3·1.5H2O(aq). In a ternary solution of La(CH3CO2)3/LaCl3 with a molar ratio La3+(aq): \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \)(aq) = 3.87: 1.00), the bands of the bound acetate on La3+ were characterized and compared to those of fully hydrated acetate, \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \left( {\text{aq}} \right) \). In this solution, almost all acetate is ligated to La3+ in a bidentate fashion and two complex species could be identified (molar ratios La3+: \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \)  = 1:1 and 1:2, respectively). In La(CH3CO2)3 solutions in H2O and D2O strong acetato complexes are formed and the bands of the bound acetate were characterized and compared with the ones of the fully hydrated acetate modes. A dilution series down to 0.0037 mol·L?1 in La(CH3CO2)3(aq) and to 0.0150 mol·L?1 in La(CH3CO2)3(D2O) showed that two acetate complexes are formed in these solutions. Again, it was shown that in these solutions the bound acetates on La3+ exist as bidentate ligands. DFT frequencies of the acetate on clusters {La(OH2)7O2CCH3)}2+ and {La(OH2)5(O2CCH3)2}+ compared well with the measured values. By determining the ligation number, \( \bar{n} \), it can be established that in dilute solutions, below 0.04 mol·L?1, a complex with a 1:1 stoichiometry (La3+: \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \)) exists in equilibrium with “free” acetate while in more concentrated solutions a 1:2 complex also forms. La3+(aq) hydrolysis is slight and very small equilibrium concentrations of CH3COOH were detected (C–C stretch at 893 cm?1). From quantitative Raman measurements, K 1 was determined to be 160 ± 10 at 22 °C.  相似文献   

20.
A series of MoO3/ZrO2–Al2O3 catalysts was prepared and investigated in the sulfur-resistant methanation aimed at production of synthetic natural gas. Different methods including impregnation, deposition precipitation, and co-precipitation were used for preparing ZrO2–Al2O3 composite supports. These composite supports and their corresponding Mo-based catalysts were investigated in the sulfur-resistant methanation, and characterized by N2 adsorption–desorption, XRD and H2-TPR. The results indicated that adding ZrO2 promoted MoO3dispersion and decreased the interaction between Mo species and support in the MoO3/ZrO2–Al2O3 catalysts. The co-precipitation method was favorable for obtaining smaller ZrO2 particle size and improving textural properties of support, such as better MoO3 dispersion and increased concentration of Mo6+ species in octahedral coordination to oxygen. It was found that the MoO3/ZrO2–Al2O3 catalyst with ZrO2Al2O3 composite support prepared by co-precipitation method exhibited the best catalytic activity. The ZrO2 content in the ZrO2Al2O3 composite support was further optimized. The MoO3/ZrO2–Al2O3 with 15 wt % ZrO2 loading exhibited the highest sulfur-resistant CO methanation activity, and excess ZrO2 reduced the specific surface area and enhanced the interaction between Mo species and support. The N2 adsorption-desorption results indicated that the presence of ZrO2 in excessive amounts decreased the specific surface area since some amounts of ZrO2 form aggregates on the surface of the support. The XRD and H2-TPR results showed that with the increasing ZrO2 content, ZrO2 particle size increased. These led to the formation of coordinated tetrahedrally Mo6+(T) species and crystalline MoO3, and this development was unfavorable for improving the sulfur-resistant methanation performance of MoO3/ZrO2–Al2O3 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号