首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ahn YC  Jung W  Chen Z 《Lab on a chip》2008,8(1):125-133
Secondary flow plays a critical function in a microchannel, such as a micromixer, because it can enhance heat and mass transfer. However, there is no experimental method to visualize the secondary flow and the associated mixing pattern in a microchannel because of difficulties in high-resolution, non-invasive, cross-sectional imaging. Here, we simultaneously imaged and quantified the secondary flow and pattern of two-liquid mixing inside a meandering square microchannel with spectral-domain Doppler optical coherence tomography. We observed an increase in the efficiency of two-liquid mixing when air was injected to produce a bubble-train flow and identified the three-dimensional enhancement mechanism behind the complex mixing phenomena. An alternating pair of counter-rotating and toroidal vortices cooperated to enhance two-liquid mixing.  相似文献   

2.
Although there exist tremendous needs for on-chip biofluid delivery, research in this field has yielded limited numbers of devices for real-world applications. One challenge is the difficulty for micropumps to meet the requirements of being low cost to fabricate, easy to integrate and effective for intended applications at the same time. This research focuses on AC electrothermal (ACET) micropumps based on planar interdigitated electrodes, due to their practicality in fabrication and operation, and compatibility with biochemical fluids. Our prior work has optimized the design of electrode dimensions for a fixed microchannel design. This work finds that microchannel dimensions can also affect ACET micropumps significantly, with respect to flow rate and electric impedance loading. This work first considers the constraints arising from impedance loading by ACET micropumps on power supplies, then the investigation describes several key parameters (threshold height, saturation thickness), to arrive at an appropriate microchannel geometry for the effective delivery of biofluids. The optimized microchannel is expected to incorporate well into a multifunctional lab-chip system to transport biofluids efficiently.  相似文献   

3.
We present theory, simulations, and experiments for discrete drop mixing in microchannels. The drops are placed sequentially in a channel and then moved at a set velocity to achieve mixing. The mixing occurs in three different regimes (diffusion-dominated, dispersion-dominated, and convection-dominated) depending on the Péclet number (Pe) and the drop dimensions. Introducing the modified Péclet number (Pe*), we show asymptotic curves that can be used to predict the mixing time and the required distance for mixing for any of the three regimes. Simulations of the mixing experiments using COMSOL agree with the theoretical limits. In our experimental work, we used a polydimethylsiloxane (PDMS) microchannel with a membrane air bypass valve to remove the air between drops. This approach enables precise control of the mixing and merging site. Experimental, simulation, and theoretical results all agree and show that mixing can occur in fractions of a second to hours, depending on the parameters used.  相似文献   

4.
Recent studies have demonstrated the strong influences of fluid rheological properties on insulator-based dielectrophoresis (iDEP) in single-constriction microchannels. However, it is yet to be understood how iDEP in non-Newtonian fluids depends on the geometry of insulating structures. We report in this work an experimental study of fluid rheological effects on streaming DEP in a post-array microchannel that presents multiple contractions and expansions. The iDEP focusing and trapping of particles in a viscoelastic polyethylene oxide solution are comparable to those in a Newtonian buffer, which is consistent with the observations in a single-constriction microchannel. Similarly, the insignificant iDEP effects in a shear-thinning xanthan gum solution also agree with those in the single-constriction channel except that gel-like structures are observed to only form in the post-array microchannel under large DC electric fields. In contrast, the iDEP effects in both viscoelastic and shear-thinning polyacrylamide solution are significantly weaker than in the single-constriction channel. Moreover, instabilities occur in the electroosmotic flow and appear to be only dependent on the DC electric field. These phenomena may be associated with the dynamics of polymers as they are electrokinetically advected around and through the posts.  相似文献   

5.
AC electroosmotic micromixer for chemical processing in a microchannel   总被引:1,自引:0,他引:1  
A rapid micromixer of fluids in a microchannel is presented. The mixer uses AC electroosmotic flow, which is induced by applying an AC voltage to a pair of coplanar meandering electrodes configured in parallel to the channel. To demonstrate performance of the mixer, dilution experiments were conducted using a dye solution in a channel of 120 microm width. Rapid mixing was observed for flow velocity up to 12 mm s(-1). The mixing time was 0.18 s, which was 20-fold faster than that of diffusional mixing without an additional mixing mechanism. Compared with the performance of reported micromixers, the present mixer worked with a shorter mixing length, particularly at low Peclet numbers (Pe < 2 x 10(3)).  相似文献   

6.
A multi-component microfluidic electrochemical cell is shown to be a useful analytical tool for probing complex coupled processes in electrolytic systems. We recently reported an enzymatic signal amplification phenomenon that may provide increased sensitivity when detecting bio-analytes (M. S. Hasenbank, E. Fu and P. Yager, Langmuir, 2006, 22, 7451-7453), but to fully harness this method requires an improved understanding of the underlying electrochemical and chemical processes. We use spatial control of electrolyte streams on patterned conductive substrates in a microfluidic platform to elucidate the coupling of homogeneous chemical steps to heterogeneous electrochemical charge transfer processes. Because the gold surface was observable using SPR imaging, electrochemical phenomena could be monitored optically in real time. Based on these and additional results, we propose a mechanism for the novel amplification phenomenon that involves direct electron transfer between surface-immobilized enzyme molecules and the gold surface. This improved understanding of the underlying mechanism should enable the future implementation of this phenomenon in signal amplification schemes for highly sensitive lab-on-a-chip biosensors.  相似文献   

7.
《Electrophoresis》2018,39(11):1329-1338
Efficient pumping of blood flow in a microfluidic device is essential for rapid detection of bacterial bloodstream infections (BSI) using alternating current (AC) electrokinetics. Compared with AC electro‐osmosis (ACEO) phenomenon, the advantage of AC electrothermal (ACET) mechanism is its capability of pumping biofluids with high electrical conductivities at a relatively high AC voltage frequency. In the current work, the microfluidic pumping of non‐Newtonian blood flow using ACET forces is investigated in detail by modeling its multi‐physics process with hybrid boundary element method (BEM) and immersed boundary‐lattice Boltzmann method (IB‐LBM). The Carreau–Yasuda model is used to simulate the realistic rheological behavior of blood flow. The ACET pumping efficiency of blood flow is studied in terms of different AC voltage magnitudes and frequencies, thermal boundary conditions of electrodes, electrode configurations, channel height, and the channel length per electrode pair. Besides, the effect of rheological behavior on the blood flow velocity is theoretically analyzed by comparing with the Newtonian fluid flow using scaling law analysis under the same physical conditions. The results indicate that the rheological behavior of blood flow and its frequency‐dependent dielectric property make the pumping phenomenon of blood flow different from that of the common Newtonian aqueous solutions. It is also demonstrated that using a thermally insulated electrode could enhance the pumping efficiency dramatically. Besides, the results conclude that increasing the AC voltage magnitude is a more economical pumping approach than adding the number of electrodes with the same energy consumption when the Joule heating effect is acceptable.  相似文献   

8.
This paper presents a fundamental study of particle electrokinetic focusing in a single microchannel constriction. Through both experiments and simulations, we demonstrate that such dielectrophoresis‐induced particle focusing can be implemented in a much smaller magnitude of DC‐biased AC electric fields (10 kV/m in total) as compared to pure DC electric fields (up to 100 kV/m). This is attributed to the increase in the ratio of cross‐stream particle dielectrophoretic velocity to streamwise electrokinetic velocity as only the DC field component contributes to the latter. The effects of the 1 kHz frequency AC to DC electric field ratio on particle trajectories and velocity variations through the microchannel constriction are also examined, which are found to agree with the simulation results.  相似文献   

9.
Experiments were performed using a microparticle image velocimetry (MPIV) for 2D velocity distributions of electroosmotically driven flows in a 40-mm-long microchannel with a square cross section of 200×200 μm. Electroosmotic flow (EOF) bulk fluid velocity measurements were made in a range of streamwise electric field strengths from 5 to 25 kV/m. A series of seed particle calibration tests can be made in a 200×120×24,000-μm untreated polydimethyl siloxane (PDMS channel incorporating MPIV to determine the electrophoretic mobilities in aqueous buffer solutions of 1× TAE, 1× TBE, 10 mM NaCl, and 10 mM borate. A linear/nonlinear (due to Joule heating) flow rate increase with applied field was obtained and compared with those of previous studies. A parametric study, with extensive measurements, was performed with different electric field strength and buffer solution concentration under a constant zeta potential at wall for each buffer. The characteristics of EOF in square microchannels were thus investigated. Finally, a composite correlation of the relevant parameters was developed in the form of within ±1% accuracy for 99% of the experimental data.  相似文献   

10.
AC electrothermal enhancement of heterogeneous assays in microfluidics   总被引:2,自引:0,他引:2  
AC-driven electrothermal flow is used to enhance the temporal performance of heterogeneous immuno-sensors in microfluidic systems by nearly an order of magnitude. AC electrokinetic forces are used to generate electrothermal flow, which in turn produces a circular stirring fluid motion that enhances the transport of diffusion-limited proteins. This provides more binding opportunities between suspended antigens and wall-immobilized antibodies. We investigate experimentally the effectiveness of electrothermal stirring, using a biotin-streptavidin heterogeneous assay, in which biotin is immobilized, and fluorescently-labeled streptavidin is suspended in a high conductivity buffer (sigma = 1.0 S m(-1)). Microfabricated electrodes were integrated within a microwell and driven at a frequency of f= 200 kHz and 10 V(rms). Fluorescent intensity measurements show that for a five minute assay, electrothermal stirring increases the binding rate by a factor of almost nine. Similar binding improvement was measured for longer assays, up to fifteen minutes. The electrothermal enhancement of this assay was modeled numerically and agrees with experimental binding rates. The measured fluid velocity of 22 +/- 2 microm s(-1) was significantly lower than that predicted by the numerical model, 1.1 mm s(-1), but nevertheless shows the same fourth power dependence on applied potential. The results demonstrate the ability for electrothermal stirring to reliably improve the response time and sensitivity within a given time limit for microfluidic diffusion-limited sensors.  相似文献   

11.
In this article high-yield (77%) and high-speed (2700 cells s(-1)) single cell droplet encapsulation is described using a Dean-coupled inertial ordering of cells in a simple curved continuous microchannel. By introducing the Dean force, the particles will order to one equilibrium position after travelling less than 1 cm. We use a planar curved microchannel structure in PDMS to spatially order two types of myeloid leukemic cells (HL60 and K562 cells), enabling deterministic single cell encapsulation in picolitre drops. An efficiency of up to 77% was reached, overcoming the limitations imposed by Poisson statistics for random cell loading, which yields only 37% of drops containing a single cell. Furthermore, we confirm that > 90% of the cells remain viable. The simple planar structure and high throughput provided by this passive microfluidic approach makes it attractive for implementation in lab on a chip (LOC) devices for single cell applications using droplet-based platforms.  相似文献   

12.
Rapid electrokinetic patterning (REP) is an emerging optoelectric technique that takes advantage of laser‐induced AC electrothermal flow and particle‐electrode interactions to trap and translate particles. The electrothermal flow in REP is driven by the temperature rise induced by the laser absorption in the thin electrode layer. In previous REP applications 350–700 nm indium tin oxide (ITO) layers have been used as electrodes. In this study, we show that ITO is an inefficient electrode choice as more than 92% of the irradiated laser on the ITO electrodes is transmitted without absorption. Using theoretical, computational, and experimental approaches, we demonstrate that for a given laser power the temperature rise is controlled by both the electrode material and its thickness. A 25‐nm thick Ti electrode creates an electrothermal flow of the same speed as a 700‐nm thick ITO electrode while requiring only 14% of the laser power used by ITO. These results represent an important step in the design of low‐cost portable REP systems by lowering the material cost and power consumption of the system.  相似文献   

13.
Zhao C  Yang C 《Electrophoresis》2011,32(5):629-637
An effective electrical boundary condition is formulated to describe AC field-driven induced-charge electrokinetic (ICEK) phenomena at the interface between a liquid and a leaky dielectric solid. Since most materials in reality possess finite dielectric and conductive properties, i.e. leaky dielectric, the present boundary condition can be used to describe the induced zeta potential on a leaky dielectric surface with consideration of both bond charges (due to polarization) and free charges (due to conduction). Two well-known limiting cases, i.e. the perfectly dielectric and the perfectly conducting wall boundary conditions can be recovered from the present formulation. Utilizing the derived boundary condition, we obtain analytical solutions in closed form for the AC field-driven induced-charge electroosmosis (ICEO) over two symmetric leaky dielectric blocks embedded in the walls of an infinitely long microchannel. Two important factors for the induced zeta potential are identified to respectively account for the polarization charges and the free charges, and their effects on AC field-driven ICEO oscillating flow patterns are analyzed. It is found that the flow patterns exhibit two counter-rotating vortices, which can be deformed, relocated, eliminated and even reverse their rotating directions. It is very promising that such temporary evolution of flow patterns can possibly induce chaotic advection which can enhance microfluidic mixing.  相似文献   

14.
The transient aspects of electroosmotic flow in a slit microchannel are studied. Exact solutions for the electrical potential profile and the transient electroosmotic flow field are obtained by solving the complete Poisson-Boltzmann equation and the Navier-Stokes equation under an analytical approximation for the hyperbolic sine function. The characteristics of the transient electroosmotic flow are discussed under influences of the electric double layer and the geometric size of the microchannel.  相似文献   

15.
This article presents an analysis of the frequency- and time-dependent electroosmotic flow in a closed-end rectangular microchannel. An exact solution to the modified Navier-Stokes equation governing the ac electroosmotic flow field is obtained by using the Green's function formulation in combination with a complex variable approach. An analytical expression for the induced backpressure gradient is derived. With the Debye-Hückel approximation, the electrical double-layer potential distribution in the channel is obtained by analytically solving the linearized two-dimensional Poisson-Boltzmann equation. Since the counterparts of the flow rate and the electrical current are shown to be linearly proportional to the applied electric field and the pressure gradient, Onsager's principle of reciprocity is demonstrated for transient and ac electroosmotic flows. The time evolution of the electroosmotic flow and the effect of a frequency-dependent ac electric field on the oscillating electroosmotic flow in a closed-end rectangular microchannel are examined. Specifically, the induced pressure gradient is analyzed under effects of the channel dimension and the frequency of electric field. In addition, based on the Stokes second problem, the solution of the slip velocity approximation is presented for comparison with the results obtained from the analytical scheme developed in this study.  相似文献   

16.
We characterize the electroosmotic flow in a microchannel with field effect flow control. High resolution measurements of the flow velocity, performed by micro particle image velocimetry, evidence the flow reversal induced by a local modification of the surface charge due to the presence of the gate. The shape of the microchannel cross-section is accurately extracted from these measurements. Experimental velocity profiles show a quantitative agreement with numerical results accounting for this exact shape. Analytical predictions assuming a rectangular cross-section are found to give a reasonable estimate of the velocity far enough from the walls.  相似文献   

17.
Cho CC  Chen CL  Chen CK 《Electrophoresis》2012,33(5):743-750
A numerical investigation is performed into the mixing performance of electrokinetically driven non-Newtonian fluids in a wavy serpentine microchannel. The flow behavior of the non-Newtonian fluids is described using a power-law model. The simulations examine the effects of the flow behavior index, the wave amplitude, the wavy-wall section length, and the applied electric field strength on the mixing performance. The results show that the volumetric flow rate of shear-thinning fluids is higher than that of shear-thickening fluids, and therefore results in a poorer mixing performance. It is shown that for both types of fluid, the mixing performance can be enhanced by increasing the wave amplitude, extending the length of the wavy-wall section, and reducing the strength of the electric field. Thus, although the mixing efficiency of shear-thinning fluids is lower than that of shear-thickening fluids, the mixing performance can be improved through an appropriate specification of the flow and geometry parameters. For example, given a shear-thinning fluid with a flow behavior index of 0.8, a mixing efficiency of 87% can be obtained by specifying the wave amplitude as 0.7, the wavy-wall section length as five times the characteristic length, the nondimensional Debye-Huckel parameter as 100, and the applied electric field strength as 43.5 V/cm.  相似文献   

18.
This paper describes a microfluidic channel that allows for diffusion-based analysis of adsorbing species without passivation of the channel surfaces. The sheath flow configuration was used to measure the diffusion coefficient of fluorescently labeled species from their spatial distribution within the microchannel by analyzing the derivative of the intensity profile at the interface between two distinct core fluids. Measurements for both a small molecule (rhodamine B) and an intermediate-sized protein (wheat germ agglutinin) were made, demonstrating the utility of the sheath flow T-sensor.  相似文献   

19.
A novel method of sheathless particle focusing by induced charge electrokinetic flow in a microchannel is presented in this paper. By placing a pair of metal plates on the opposite walls of the channel and applying an electrical field, particle focusing is achieved due to the two pairs of vortex that constrain the flow of the particle solution. As an example, the trajectories of particles under different electrical fields with only one metal plate on one side channel wall were numerically simulated and experimentally validated. Other flow focusing effects, such as the focused width ratio (focused width/channel width) and length ratio (focused length/half‐length of metal plate) of the sample solution, were also numerically studied. The results show that the particle firstly passes through the gaps between the upstream vortices and the channel walls. Afterwards, the particle is focused to pass through the gap between the two downstream vortices that determine the focused particle position. Numerical simulations show that the focused particle stream becomes thin with the increases in the applied electrical field and the length of the metal plates. As regards to the focused length ratio of the focused stream, however, it slightly increases with the increase in the applied electrical field and almost keeps constant with the increase in the length of the metal plate. The size of the focused sample solution, therefore, can be easily adjusted by controlling the applied electrical field and the sizes of the metal plates.  相似文献   

20.
Enzymatic degradation of p-chlorophenol was carried out in a two-phase flow in a microchannel (100 microm width, 25 microm depth) fabricated on a glass plate (70 mm x 38 mm). This is the first report on the enzymatic reaction in a two-phase flow on a microfluidic device. The surface of the microchannel was partially modified with octadecylsilane groups to be hydrophobic, thus allowing clear phase separation at the end-junction of the microchannel. The enzyme (laccase), which is surface active, was solubilized in a succinic aqueous buffer and the substrate (p-chlorophenol) was in isooctane. The degradation of p-chlorophenol occurred mainly at the aqueous-organic interface in the microchannel. We investigated the effects of flow velocity and microchannel shape on the enzymatic degradation of p-chlorophenol. Assuming that diffusion of the substrate (p-chlorophenol) is the rate-limiting step in the enzymatic degradation of p-chlorophenol in the microchannel, we proposed a simple theoretical model for the degradation in the microchannel. The calculated degradation values agreed well with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号