首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utility and promise of magnetic nanoparticles (MagNPs) for biomedicine rely heavily on accurate determination of the particle diameter attributes. While the average functional size and size distribution of the magnetic nanoparticles directly impact the implementation and optimization of nanobiotechnology applications in which they are employed, the determination of these attributes using electron microscopy techniques can be time-consuming and misrepresentative of the full nanoparticle population. In this work the average particle diameter and distribution of an ensemble of Fe3O4 ferrimagnetic nanoparticles are determined solely from temperature-dependent magnetization measurements; the results compare favorably to those obtained from extensive electron microscopy observations. The attributes of a population of biocompatible Fe3O4 nanoparticles synthesized by a thermal decomposition method are obtained from quantitative evaluation of a model that incorporates the distribution of superparamagnetic blocking temperatures represented through thermomagnetization data. The average size and size distributions are determined from magnetization data via temperature-dependent zero-field-cooled magnetization. The current work is unique from existing approaches based on magnetic measurement for the characterization of a nanoparticle ensemble as it provides both the average particle size as well as the particle size distribution.  相似文献   

2.
X-ray powder diffraction, magnetization, transport and magnetic resonance measurements of nanosize La0.7Sr0.3MnO3 (LCMO) manganites have been performed. The nanosize manganites were synthesized with a co-precipitation method at different (600, 700, 800 and 1000 °C) temperatures. The crystal structure of the nanopowders obtained was determined to be perovskite-like with a rhombohedral distortion (the space group R3¯c). The average size of synthesized nanoparticles (from 17 to 88 nm) was estimated using the X-ray diffraction and low temperature adsorption of argon methods. All the nanosize manganites show ferromagnetic-like ordering. Both the Curie temperature and magnetization decrease with reducing the particle size. The decrease of magnetization is due to the disordered surface shell of particles. The disordered surface layer is a source of the surface anisotropy and is responsible for the increase of coercivity. Temperature dependences of the magnetic resonance spectra parameters have allowed obtaining information on dynamics of magnetic properties in the nanoparticle systems. The resistivity was established to become higher by reducing the particles’ size and increases to a great extent in nanoparticles with the smallest average size at low temperatures. The magnetic entropy was shown to be smaller for the small particles. Using the temperature dependence of magnetic entropy the relative cooling power of the nanosize samples studied was evaluated.  相似文献   

3.
Nano-crystalline MnFe2−xAgxO4 (x = 0, 0.1, 0.2, 0.3 and 0.6) samples with average grain size of 4–7 nm were synthesized by a simple method based on decomposition of metal nitrates in presence of citric acid. The samples were characterized by different structural, magnetic and electrical measurements. Rietveld refinement of X-ray diffraction data confirmed cubic spinel structure of the samples. Results show that Ag doping decreases the crystallite size, magnetization and coercivity of nanoparticles. By increasing the Ag content in the samples the saturation magnetization shows interesting temperature dependent behavior. It was realized that magnetization of smaller particles show higher sensitivity to temperature variations than larger particles. DC electrical resistivity measurements in the temperature range of 300–650 K show that the resistivity first increases and then decreases by increasing the Ag content in the samples. Curie temperature (Tc) and polaron activation energy in ferromagnetic and paramagnetic regions were estimated by using resistivity curves.  相似文献   

4.
By using oil in water micelles, cobalt ferrite particles having an average diameter around 3 nm were synthetised. These nanoparticles are characterized by the presence of cation vacancies and no Fe(II) is observed, as it has been described in literature previously. Chemical interfacial treatment allows to coat the particles with citrate derivatives. The magnetic properties of uncoated and coated particles strongly diluted in a polymer substrate are compared by magnetization measurements and 57Fe M?ssbauer spectroscopy. The anisotropy constant is shown to be independent of coating, whereas the magnetization is found to be larger in the uncoated particles. Received 3 February 1998  相似文献   

5.
6.
We investigated the properties of metallic cobalt particles which were prepared by metal organic synthesis. By X-ray diffraction we identified the FCC Co phase and obtained a particle size of 6 nm. VSM measurements revealed a specific magnetization of 77.5 Am2/kg which is 46% of the bulk value. From the analysis of the magnetization curve the parameters of the particle size distribution were estimated. In order to assess the suitability of the material for heating applications AC susceptometry as well as calorimetrical measurements of the specific loss power at 400 kHz and 13–25 kA/m were performed. We obtained values from 500 to 1300 W/g.  相似文献   

7.
Experimental and theoretical studies were carried out to investigate the spatial distribution of colloidal particles in magnetic fluids formed under the influence of magnetophoresis and gradient diffusion in a strong magnetic field. Several theoretical models, describing the equilibrium concentration profiles for rigid chain-like and quasispherical aggregates, are discussed. The experiment was made for four samples of magnetic fluids, differing in the average diameter of magnetic particles and the width of the particle size distribution. The analysis of the experimental data shows that the aggregates essentially change the concentration profile, making it nonlinear even in small (2 mm) magnetic fluid samples. Good agreement between the experimental and theoretical curves is observed in the case when the aggregates contain on the average 40-50 particles. The average diameter of single particles, calculated from the concentration profile curves, coincides with the average diameter, found from the magnetogranulometric analysis.  相似文献   

8.
Mn0.5Zn0.5Fe2O4 ferrite nanoparticles with tunable Curie temperature and saturation magnetization are synthesized using hydrothermal co-precipitation method. Particle size is controlled in the range of 54 to 135 Å by pH and incubation time of the reaction. All the particles exhibit super-paramagnetic behaviour at room temperature. Langevin’s theory incorporating the interparticle interaction was used to fit the virgin curve of particle magnetization. The low-temperature magnetization follows Bloch spin wave theory. Curie temperature derived from magnetic thermogravimetric analysis shows that Curie temperature increases with increasing particle size. Using these particles magnetic fluid is synthesized and magnetic characterization is reported. The monolayer coating of surfactant on particle surface is confirmed using thermogravimetric measurement. The same technique can be extended to study the magnetic phase transition. The Curie temperature derived using this measurement complies with the low-temperature magnetic measurement. The room-temperature and high-temperature magnetization measurements are also studied for magnetic fluid systems. The magnetic parameters derived for fluid are in good agreement with those obtained for the particle system.  相似文献   

9.
Nanoparticles of ZnFe2O4 have been prepared by using sol-gel method in two different mediums (acidic and basic) in order to observe the influence of the medium on the magnetic properties of the obtained nanoparticles. X-ray diffraction and Mössbauer studies of these samples show the presence of single-phase spinel structure. The average size of the particles as determined by X-ray diffraction increases with the annealing temperature from 18 to 52 nm. With the increase in particle size, magnetization decreases while the magnetization blocking temperature increases. Magnetization studies show that the samples prepared in basic medium have more ferrimagnetic nature as compared to those prepared in acidic medium. We understand this increase in magnetization as reflective of the increased degree of inversion (transfer of Fe3+ ions from octahedral to tetrahedral sites) in the particles of smaller size unit cells. From lattice parameter calculations on different particles it is determined that inversion is more favorable in the particles prepared in a basic medium than in the acidic medium due to the smaller cell size in the former.  相似文献   

10.
In the present work, we have synthesized and characterized magnetic nanoparticles of maghemite γ-Fe2O3 to study their structural and magnetic properties. For the preparation, magnetite precursor, were oxidized by adjusting the pH = 3.5 at about 80 °C in an acid medium, The mean size of the maghemite particles calculated from the X-ray diffractogram was around 5.7 nm. Mössbauer spectroscopy measurements at room temperature show their superparamagnetic behavior. Furhermore, Mössbauer measurements were carried out at 77 K and 4.2 K in order to find the typical hyperfine fields of the maghemite. Magnetite phase was not found. FC and ZFC magnetization curves measured at 500 Oe indicate a blocking temperature of 105.3 K. The magnetization measurements also show almost zero coercivity at RT. TEM images show nanoparticles with diameter smaller than 10 nm, which are in good agreement with the X-ray pattern and the fitting of the magnetization data.  相似文献   

11.
A method of forming a two-dimensional ordered superlattice of magnetic nanoparticles in close-packed opal structures of silica (SiO2) spheres has been developed. Nickel nanopowder with an average particle size of about 70 nm is used as a source of magnetic particles. Atomic-force and magnetic-force microscopy studies show that all magnetic particles are located in the interstices of the opal lattice, while the magnetization vectors of neighboring nickel particles can have different magnitudes and directions.  相似文献   

12.
The pore size distribution of porous media can be determined in a completely non-invasive manner using a new nuclear magnetic resonance (NMR) technique which monitors the magnetization decay due to diffusion in internal fields (DDIF). However, using of the DDIF technique is restricted to the low-phase encoding limit when only the relaxation mode and the first-order diffusion mode are excited. In the present work the fulfillment of such a limit is verified for a progressive increase of the magnetic impurity content of the porous media. If the higher order diffusion modes are excited they lead both to a stronger attenuation of the echo signal and to the appearance of ripples in the DDIF spectra which cannot be related to a pore size distribution. The samples used in this study are porous ceramics prepared using the replication technique and the magnetic impurity is iron (III) oxide which is introduced in an increasing concentration inside the porous matrix. All NMR experiments were done on water filling such porous ceramics using a low-field instrument operating at a proton resonance frequency of 20 MHz. The average pore dimension obtained with the DDIF technique in the weak encoding limit indicates a satisfactory agreement with that observed in optical microscopy images.  相似文献   

13.
Nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4) have been prepared by a sol-gel method where the ultra-sonication technique has been adopted to reduce the agglomeration effect among the nanoparticles. The samples were heat-treated at three different temperatures and the formation of the nanocrystalline phase was confirmed by X-ray diffractograms (XRD). The average particle size of each sample has been estimated from the (311) peak of the XRD pattern using the Debye-Scherrer formula and the average sizes are in the range of 10-21 nm. The average particle size, crystallographic phase, etc. of some selected samples obtained from the high-resolution transmission electron microscopy are in agreement with those estimated from the XRD patterns. Static magnetic measurements viz., hysteresis loops, field cooled and zero field cooled magnetization versus temperature curves of some samples carried out by SQUID in the temperature range of 300 to 5 K clearly indicate the presence of superparamagnetic (SPM) relaxation of the nanoparticles in the samples. The maximum magnetization of the SPM sample annealed at 500 °C is quite high (68 Am2/Kg) and the hysteresis loops are almost square shaped with very low value of coercive field at room temperature (827.8 A/m). The particle size, magneto-crystalline anisotropy, etc. have been estimated from the detailed theoretical analysis of the static magnetic data. The dynamic magnetic behavior of the samples was also investigated by observing the ac hysteresis loops and magnetization versus field curves with different time windows at room temperatures. The different soft magnetic quantities viz., coercive field, magnetization, remanance, hysteresis losses, etc. were extracted from dynamic measurements. Dynamic measurements confirmed that the samples are in their mixed state of SPM and ordered ferrimagnetic particles, which is in good agreement with the results of static magnetic measurements. Mössbauer spectra of the samples recorded at room temperature (300 K) and at different temperatures down to 20 K confirmed the presence of the SPM relaxation of the nanoparticles of the samples.  相似文献   

14.
The results of transmission electron microscopy (TEM), magnetic and magneto-resistivity investigations of the Cu–10Co (wt%) giant magneto-resistance (GMR) melt-spun ribbons are reported and discussed. To obtain different distributions of ferromagnetic Co particles in a non-magnetic Cu matrix, the alloy was aged at 550 °C for 0.5, 1, 2, 16, and 32 h. Particle size measurements were performed using quantitative TEM metallography methods. Two size classes of Co particles are identified: primary particles (P) precipitated during the melt-spinning process and the secondary particles (S) precipitated during the ageing process. The results of magnetization and coercitivity are correlated with the results of calculations based on the real Co particle distributions determined from TEM micrographs. The behavior of magnetization and coercive force in function of ageing time is explained as related with changes of a mean particle size. It is shown that the GMR effect is not influenced by Co particles distribution for the S particles with the mean size less than 10 nm, whereas for Co distributions with larger mean diameters, the GMR effect is strongly reduced.  相似文献   

15.
The cobalt ferrite nanoparticles of 20 nm size were synthesized by sol-gel auto-combustion technique. The samples were irradiated with Nd:YAG laser to understand the effects of irradiation on structural, cation distribution and magnetic properties. The virgin and irradiated samples were characterized by X-ray diffraction technique. The X-ray diffraction studies at room temperature shows that defects were created in the lattice after irradiation which causes effects on structural, cation distribution and magnetic properties. The energy dispersive analysis of X-rays (EDAX) showed the chemical composition is as per the expected stichiometry. The lattice constant observed from XRD data for virgin and irradiated samples shows increasing trend after irradiation. Cation distribution was investigated by using X-ray diffraction method. We observe decrease in magnetization of the samples after irradiation. The observed reduction in the saturation magnetization after irradiation can be understood on the basis of the partial formation of paramagnetic centers and rearrangement of cations in the lattice.  相似文献   

16.
Granular films composed of nanometric Co particles embedded in an insulating ZrO2 matrix were prepared by pulsed laser deposition in a wide range of Co volume concentrations (0.06<xv<0.42). High-resolution electron microscopy (HREM) shows very sharp interfaces between the crystalline particles and the amorphous matrix, with no evidence of intermixing. The mean particles size and width of the distribution determined by fitting the low-field magnetic susceptibility and magnetization curves in the paramagnetic regime to a distribution of Langevin functions are in agreement with the parameters extracted from direct TEM observations. Ferromagnetic correlations between Co particles are evident in the field-cooled state when increasing Co concentration. The effective anisotropy constant estimated from magnetic measurements is about two orders of magnitude larger than the bulk value, and decreases as particle size increases.  相似文献   

17.
With a view to study the structural, electronic, magnetic, and electrical properties of Zn0.9Ni0.1O diluted magnetic semiconductor nanoparticles, systematic investigation has been undertaken. Samples were prepared for the first time by hydrazine-assisted polyol method, and the powders were annealed at various temperatures in order to obtain the samples with different grain sizes. From the Rietveld refined XRD data, lattice parameters, the average crystallite size values, and r.m.s micro-strain values were computed. From the AFM and TEM studies, the average particle sizes were obtained and are found to be in the range 12–46 nm. XPS measurements clearly indicate that the chemical states as +2 for both Zn and Ni ions and are stable with varying annealing temperature. Further, using XPS and optical studies, the electronic structure of the materials was analyzed. A careful phase analysis of the Rietveld refined XRD data (at logarithmic scale) selected area electron diffraction patterns, FTIR, Raman, and XPS studies; it was concluded that all the samples are having hexagonal wurtzite structure without any detectable impurity phases. The optical band gap values are found to exhibit a clear blue shift. The influence of oxygen vacancies on the emission spectra was studied by Photo Luminescence measurement. The magnetization studies were undertaken by VSM, MFM, and FMR techniques and confirmed the presence of clear room temperature ferromagnetism without any magnetic clusters. The carrier concentration (n) values obtained from the thermo power studies are found to decrease with increasing annealing temperature and depend on the local defects which are critically influenced by the annealing temperature and crystallite size of the nanomaterials.  相似文献   

18.
利用APD对大气气溶胶空气动力学直径测量分析   总被引:2,自引:1,他引:1  
连悦  刘文清  张天舒  刘建国 《光子学报》2005,34(12):1837-1840
详细介绍了气溶胶大气粒子经过两个激光束后通过雪崩二极管(APD)探测其形成的双峰信号,从而得到气溶胶粒子飞行时间的方法,利用标准粒子对飞行时间进行校准后,实现了对大气气溶胶粒子直径的实时监测.通过不同粒径多组的实验数据进行分析组成专家模式,代入系统进行空气测量或标准粒子测量,得到的实验值与理论值一致.  相似文献   

19.
In this paper, a Monte Carlo simulation is carried out to evaluate the equilibrium magnetization of magnetic multi-core nanoparticles in a liquid and subjected to a static magnetic field. The particles contain a magnetic multi-core consisting of a cluster of magnetic single-domains of magnetite. We show that the magnetization of multi-core nanoparticles cannot be fully described by a Langevin model. Inter-domain dipolar interactions and domain magnetic anisotropy contribute to decrease the magnetization of the particles, whereas the single-domain size distribution yields an increase in magnetization. Also, we show that the interactions affect the effective magnetic moment of the multi-core nanoparticles.  相似文献   

20.
Specific features of magnetization distribution in elliptical Co nanoparticles have been investigated by magnetic force microscopy. Reversible transitions (induced by the microscope magnetic probe) between the uniform and vortex magnetization states have been found. The possibility of controlling the vorticity direction in such particles is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号