首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Extending Parikh and Wilczek's work to the non-stationary black hole, we discuss the Hawking radiation of the slowly varying Reissner-NordstrSm black hole by considering the unfixed background spacetime and the selfgravitation interaction. The result shows that the tunnelling rate is related to both the variation of BekensteinHawking entropy and the radiation spectrum deviating from the purely thermal one. This is in agreement with Parikh and Wilczek's result. Then a new method to study Hawking radiation of the non-stationary black holes is presented.  相似文献   

3.
We extend Zhang and Zhao's recent work to black hole with topological defect whose Arnowitt-Deser-Misner mass is no longer identical to its mass parameter. The behaviour of the tunnelling massive particles is investigated, and the emission rate at which massive particles tunnel across the event horizon of the black hole is calculated. The result is consistent with an underlying unitary theory, and takes the same functional form as that of mass-less particles.  相似文献   

4.
In the tunneling framework of Hawking radiation, charged particle’s tunneling in the modified Reissner-Nordstrom black hole from gravity’s rainbow is investigated. To this end, following the Schwarzschild solution in gravity’s rainbow, the metric of the modified Reissner-Nordstrom black hole is given. In the tunneling process, the metric fluctuation is taken into account, due to not only the energy conservation and electric charge conservation, but also the spacetime quantum effects. The calculation shows out that the emission rate satisfies the first law of black hole thermodynamics and is consistent with an underlying unitary theory. In addition, it is found that the entropy of the modified black hole is different to the Benkestein-Hawking entropy and the quantum corrections of the entropy appears.  相似文献   

5.
Majhi and Vagenas’s work showed that the entropy spectrum of a spherically symmetric black hole can be obtained without quasinormal modes. In this paper, we extend this work to a Kerr–Newman–Kasuya black hole and discuss its spectra of entropy and area. We find that the spectra are equally spaced and are independent on the parameters of black hole.  相似文献   

6.
7.
Since Parikh and Wilczek proposed a semiclassical tunneling method to investigate the Hawking radiation of static and spherically symmetric black holes, the method has been extensively developed to study various black holes. However, in almost all of the subsequent papers, there exists a important shortcoming that the geodesic equation of the massive particle is defined inconsistently with that of the massless particle. In this paper, we propose a new idea to reinvestigate the tunneling radiation from the event horizon of the Reissner-Nordström black hole. In our treatment, by starting from the Lagrangian analysis on the action, we redefine the geodesic equation of the massive and massless particle via tunneling from the event horizon of the Reissner-Nordström black hole, which overcomes the shortcoming mentioned above. The highlight of our work is a new and important development for the Parikh-Wilczek’s semiclassical tunneling method.  相似文献   

8.
In this paper we calculate the center-of-mass energy of two colliding test particles near the rotating and non-rotating Horava–Lifshitz black hole. For the case of a slowly rotating KS solution of Horava–Lifshitz black hole we compare our results with the case of Kerr black holes. We confirm the limited value of the center-of-mass energy for static black holes and unlimited value of the center-of-mass energy for rotating black holes. Numerically, we discuss temperature dependence of the center-of-mass energy on the black hole horizon. We obtain the critical angular momentum of particles. In this limit the center-of-mass energy of two colliding particles in the neighborhood of the rotating Horava–Lifshitz black hole could be arbitrarily high. We found appropriate conditions where the critical angular momentum could have an orbit outside the horizon. Finally, we obtain the center-of-mass energy corresponding to this circle orbit.  相似文献   

9.
10.
By using the method of quantum statistics, we directly derive the partition function of bosonic and fermionic field in Reissner-Nordström-anti-de Sitter black hole and obtain the integral expression of black hole's entropy. It avoids the difficulty in solving the wave equation of various particles. Then via the improved brick-wall method, membrane model, we calculate the statistical entropy of a film with the thickness of (N – 1) around the outside of horizon. In our result we can choose proper parameter in order to let the thickness of film tend to zero and have it approach the surface of horizon. Consequently, the entropy of black hole is proportional to the area of horizon. The stripped term and the divergent logarithmic term in the original brick-wall method no longer exist. In the whole process, physics idea is clear; calculation is simple. We offer a new simple and direct way of calculating the entropy of different complicated black holes.  相似文献   

11.
Taking the self-gravitation interaction and energy conservation,charge conservation and angular momentum conservation into accpunt, we discuss the tunnelling characteristics of the charged particle from Sen black hole by the Hamilton-Jacobi method. The result shows that the tunnelling probability is related to the change of Bekenstein-Hawking entropy, and the actual radiation spectrum deviates from the pure thermal one, which is consistent with the result of Parikh and Wilczek and gives a new method to correct the Hawking pure thermal spectrum of Sen black hole.  相似文献   

12.
13.
Kvon  Z. D.  Olshanetsky  E. B.  Drofa  M. A.  Mikhailov  N. N. 《JETP Letters》2021,114(6):341-346
JETP Letters - Anderson localization is discovered in a highly disordered two-dimensional electron–hole system in a HgTe quantum well. The behavior of this localization is fundamentally...  相似文献   

14.
For m 2 < a 2 + q 2, with m, a, and q respectively the source mass, angular momentum per unit mass, and electric charge, the Kerr–Newman (KN) solution of Einstein's equation reduces to a naked singularity of circular shape, enclosing a disk across which the metric components fail to be smooth. By considering the Hawking and Ellis extended interpretation of the KN spacetime, it is shown that, similarly to the electron-positron system, this solution presents four inequivalent classical states. Making use of Wheeler's idea of charge without charge, the topological structure of the extended KN spatial section is found to be highly non-trivial, leading thus to the existence of gravitational states with half-integral angular momentum. This property is corroborated by the fact that, under a rotation of the space coordinates, those inequivalent states transform into themselves only after a 4 rotation. As a consequence, it becomes possible to naturally represent them in a Lorentz spinor basis. The state vector representing the whole KN solution is then constructed, and its evolution is shown to be governed by the Dirac equation. The KN solution can thus be consistently interpreted as a model for the electron-positron system, in which the concepts of mass, charge and spin become connected with the spacetime geometry. Some phenomenological consequences of the model are explored.  相似文献   

15.
Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle–antiparticle amplitude. This process differs from conventional on-shell Mandelstam s, t, u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel non-perturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle–antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the non-relativistic Coulomb problem, including the forward scattering singularity, the essential singularity in the phase, and the Bohr bound-state spectrum.Work supported in part by Department of Energy contract DE-AC03-76SF00515  相似文献   

16.
We calculate the free energy and the entropy of a scalar field in terms of the brick-wall method in the background of the Schwarzschild–de Sitter space–time. We obtain the entropy of a black hole and the cosmic entropy at nonasymptotic flat space. When the cut-off satisfies the proper condition, the entropy of a black hole is proportional to the area of a black hole horizon, and the cosmic entropy is proportional to the cosmic horizon area.  相似文献   

17.
Using the adiabatic invariant action and applying the Bohr–Sommerfeld quantization rule and first law of black hole thermodynamics, a study of the quantization of the entropy and horizon area of a Kerr–Newman–de Sitter black hole is carried out. The same entropy spectrum is obtained in two different coordinate systems. It is also observed that the spacing of the entropy spectrum is independent of the black hole parameters. Also, the corresponding quantum of horizon area is in agreement with the results of Bekenstein.  相似文献   

18.
19.
We briefly discuss the collinear factorization formula for the associated production of one particle and a Drell–Yan pair in hadronic collisions. We outline possible applications of the results to three different research areas.  相似文献   

20.
Making use of brick-wall model proposed by 't Hooft, we have obtained the free energy and the entropy of Fermionic field and given out their expressions under the Kerr space–time background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号