首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A high sensitive and compact refractive index sensor based on slotted photonic crystal waveguide (S-PhCW) is demonstrated. This design is worked on a Mach–Zehnder interferometer (MZI) configuration with S-PhCW as the measuring arm, which can be used to detect any changes in refractive index that correspond to different concentration of the measuring liquid. Combining the slow light enhancement in photonic crystal waveguide (PhCW) with the advantage of excellent optical confinement in slot waveguide, the sensitivity of this simple scheme can reach to 2.3 × 109 nm/RIU with the active region of only 1 mm long.  相似文献   

2.
We present a semi-analytic method to calculate the dispersion curves and the group velocity of photonic crystal waveguide modes in two-dimensional geometries. We model the waveguide as a homogenous strip, surrounded by photonic crystal acting as diffracting mirrors. Following conventional guided-wave optics, the properties of the photonic crystal waveguide may be calculated from the phase upon propagation over the strip and the phase upon reflection. The cases of interest require a theory including the specular order and one other diffracted reflected order. The computational advantages let us scan a large parameter space, allowing us to find novel types of solutions.  相似文献   

3.
The spectral dependence of the bending loss of cascaded 60 degrees bends in photonic crystal (PhC) waveguides is explored in a slab-type silicon-on-insulator system. An ultralow bending loss of (0.05 +/- 0.03) dB/bend is measured at wavelengths corresponding to the nearly dispersionless transmission regime. In contrast, the PhC bend is found to become completely opaque for wavelengths corresponding to the slow-light regime. A general strategy is presented and experimentally verified to optimize the bend design for improved slow-light transmission.  相似文献   

4.
一种新型无色散慢光光子晶体薄板波导   总被引:1,自引:0,他引:1       下载免费PDF全文
沈宏君  田慧平  纪越峰 《物理学报》2010,59(4):2820-2826
利用椭圆形孔替代传统光子晶体薄板波导中邻接波导的最内层两排圆孔构成一种新型低损耗光子晶体薄板光波导.该波导的群速度和群速度色散特性强烈依赖于波导中这两排邻接波导的椭圆孔的特性.借助波导导模展开方法,计算得到波导的能带结构和群指数,并分析了它们与椭圆孔的参数关系.通过优化这些椭圆孔的参数,可以增加光子晶体光波导导模在光锥以下的无固有传输损耗带宽,在2—45 nm 的带宽上实现无色散的常数群速度.这些理论结果将为低损耗低色散慢光波导的设计制造提供理论基础. 关键词: 光子晶体薄板波导 群速度 群指数 群速度色散  相似文献   

5.
利用椭圆形孔替代传统光子晶体薄板波导中邻接波导的最内层两排圆孔构成一种新型低损耗光子晶体薄板光波导.该波导的群速度和群速度色散特性强烈依赖于波导中这两排邻接波导的椭圆孔的特性.借助波导导模展开方法,计算得到波导的能带结构和群指数,并分析了它们与椭圆孔的参数关系.通过优化这些椭圆孔的参数,可以增加光子晶体光波导导模在光锥以下的无固有传输损耗带宽,在2—45 nm 的带宽上实现无色散的常数群速度.这些理论结果将为低损耗低色散慢光波导的设计制造提供理论基础.  相似文献   

6.
We present a procedure to generate wideband and low dispersion slow light in slotted photonic crystal waveguide. By shifting the first and second rows of air holes of slotted photonic crystal waveguide, the bandwidth of slow light can be increased, with small group velocity dispersion. Using 2D plane wave expansion method, we numerically demonstrate slow light with the nearly constant group indices of 23, 42, and 54 over 17.6 nm, 6.7 nm and 3.3 nm bandwidth, respectively. The maximal normalized delay-bandwidth product is 0.26. From the fabrication's point of review, shifting the position of holes is easier to be controlled technically than changing the diameters of air holes. In addition, our simulations suggest this design is tolerant to deviation for positions of the first two rows of air holes. Therefore, the proposed approach decreases the dependence on the fabrication accuracy.  相似文献   

7.
研究了慢光模式在SOI(silicon-on-insulator)材料光子晶体线缺陷弯折波导中的传输特性. 通过优化波导弯折处的结构参数,慢光模式在光子晶体60°与120°弯折波导中的透射率提高10倍以上,归一化透射率分别达到80%和60%以上. 为了进一步减慢光速,设计了新颖的高Q值耦合腔弯折波导结构,在归一化透射率达到75%的基础上,光波群速度低至c/170(c为真空光速). 研究结果对于增强光子晶体的慢光效应,提高光子晶体慢光器件的微型化和集成化都有一定的积 关键词: 光子晶体 慢光 弯折波导 透射率  相似文献   

8.
The authors design an ultra-compact all-PC-integrated polarization beam splitter which is only composed of three waveguides: one input waveguide and two output waveguides. The input waveguide can support both TM and TE modes, but one of the two output waveguides can only support TM modes while the other can only support TE modes. So an incident beam will be separated into two different polarization beams which emerge from different output waveguides. By the simulation of finite-difference time-domain method, we know that the polarization beam splitter really works the way as we predict.  相似文献   

9.
A novel harmonic detection theory and method for multi-component gas sensing based on photonic crystal waveguide (PCW) slow light is proposed. The PCW is used as gas chamber, and harmonic detection method was adopted for signal processing. This system could real-time and remote monitoring multi-component gases simultaneously with sensitivities increased by 10,278, 8650 and 6282 times respectively compared with system PCW not used. The proposed theory and method possesses powerful practicability and favorable application prospects. It could be also applied to other fluid concentration detection system, thus providing a new idea for expanding applications of slow light in sensing fields.  相似文献   

10.
基于二维光子晶体耦合腔波导的新型慢光结构研究   总被引:2,自引:0,他引:2       下载免费PDF全文
鲁辉  田慧平  李长红  纪越峰 《物理学报》2009,58(3):2049-2055
对二维介质柱光子晶体耦合腔波导慢光结构进行了研究,发现随着缺陷腔之间晶格个数增多,群速度减小很快,选用7×7超胞单元时耦合腔波导结构的导模最大群速度νg-max只有光子晶体线缺陷波导的1/251.然后对7×7超胞单元的缺陷腔周围四个介质柱半径进行调整,发现新型结构导模的νg-max进一步减小,最小可达到589×10-4c,约为未调整之前的1/5.最后通过比较发现,当改变缺陷腔上下相邻两个介质柱半径时得到的结构具有更好的慢光特性.  相似文献   

11.
12.
Visible light variable optical attenuators(VOA) are essential devices in the application of channel power regulation and equalization in wavelength-division multiplexing cross-connect nodes in plastic optical fiber(POF) transmission systems.In this paper, a polymer/silica hybrid waveguide thermo–optic attenuator based on multimode interference(MMI) coupler is designed and fabricated to operate at 650 nm. The single-mode transmission condition, MMI coupler, and transition taper dimensions are optimized through the beam propagation method. Thermal analysis based on material properties provides the optimized heater placement angle. The fabricated VOA presents an attenuation of 26.5 dB with a 21-mW electrical input power at 650 nm. The rise time and fall time are 51.99 and 192 μs, respectively. The time–stability measurement results prove its working reliability.  相似文献   

13.
We present a new method for bend loss control in a curved channel optical waveguide and employ it in a novel design of a thermo-optic variable optical attenuator. We show that the introduced asymmetric refractive index profile of the waveguide structure, combined with the optimal placement of the heating electrodes, leads to a significant increase of the dynamic range of the attenuator. PACS 42.82.Et; 42.70.Jk; 42.79.Ta  相似文献   

14.
In this paper, we investigate the enhancement of Raman amplification bandwidth with self phase modulation (SPM) effect in silicon based photonic crystal waveguides. The Maxwell equations are solved using finite difference time domain method considering two photon absorption, free carrier absorption, Kerr and SPM effects. We also study the effects of shape, width and average power on the Raman amplification bandwidth. Then by changing the photonic crystal geometrical parameters, pump and signal group velocity are reduced to achieve higher Raman bandwidth.  相似文献   

15.
J Tan  M Lu  A Stein  W Jiang 《Optics letters》2012,37(15):3189-3191
We demonstrate a novel scheme to control the excitation symmetry for an odd mode in a photonic crystal waveguide and investigate the spectral signature of this slow light mode. An odd-mode Mach-Zehnder coupler is introduced to transform mode symmetry and excite a high-purity odd mode with 20?dB signal contrast over the background. Assisted by a mixed-mode Mach-Zehnder coupler, slow light mode beating can be observed and is utilized to determine the group index of this odd mode. With slow light enhancement, this odd mode can help enable novel miniaturized devices such as one-way waveguides.  相似文献   

16.
Hong Jun Shen  Qing Lan Zhang 《Optik》2011,122(13):1174-1178
We report a low-loss photonic crystal slab waveguide formed by deforming the innermost circle air holes in the conventional photonic crystal slab waveguide into elliptical ones. We obtain the photonic bands and group index of guided modes in this photonic crystal waveguide by guided-mode expansion method and investigate the dependence of photonic bands and group index of guided modes on the parameters of the innermost elliptical air holes. The group velocity and group velocity dispersion of this waveguide strongly depend on the innermost elliptical air holes. Photonic crystal slab waveguide with the optimum innermost elliptical air holes possesses a wider single mode region below the light line, in which light can easily propagate without intrinsic loss. At the same time, the guided mode supported by this waveguide has nearly constant group velocity and vanishing group velocity dispersion in a 3-5 nm bandwidth.  相似文献   

17.
Tuning of the operating wavelength of slow light in the slotted photonic crystal waveguide using microfluidic infiltration has been investigated. Using 2D plane wave expansion method, we numerically demonstrate that the operating wavelength can be shifted from the C to L band, simply by choosing the refractive index of the infiltrated fluid. It is also found that, as the refractive index of the infiltrated fluid changes, the group velocity dispersion has slight variation at different operating wavelength. This design opens the possibility for post-fabrication scheme of tuning the operating wavelength of slow light in slotted photonic crystal waveguide, and allows the device to be optimized for different applications.  相似文献   

18.
A thermo-optical variable optical attenuator was studied based on silicon on insulator (SOI) substrate waveguide. It is composed by the single-mode waveguide, taper waveguide, multi-mode waveguide, and inclined electrode. By adjusting the applied voltage on the inclined electrode it can achieve continuously variable attenuation of the output light. The results we studied show that when the applied voltage is about 4.7 V (the corresponding power is 233 mW), the variation of the waveguide's core temperature is about 33 °C, the refractive index changes more than 5.0 × 10−3 and the attenuation will reach 35 dB, and the response time is only 35 μs.  相似文献   

19.
This work proposed a methodology based on the liquid infiltration of slotted photonic crystal waveguide (SPCW). By choosing the refractive index that infiltrated in the first and second rows of air holes adjacent to the slot, respectively, SPCW was optimized to possess wideband slow light with large group index and low dispersion. The properties of SPCW were numerically simulated by plane wave expansion (PWE) method and finite-difference time-domain (FDTD) method. Simulation results showed that the designed SPCW could control the group index for the same SPCW with the nearly constant group index of 50, 68, 81, 150, and 200 over 7.5 nm, 5.5 nm, 3.1 nm, 1.65 nm, and 1.15 nm. In addition, we demonstrated that this post-fabrication liquid infiltrated technology has the potential for realizing reconfigurable and tunable SPCW, in which the flexible wavelength range of SPCW can also be controlled by different liquid infiltration.  相似文献   

20.
We demonstrate all-optical demultiplexing of a high-bandwidth, time-division multiplexed 160 Gbit/s signal to 10 Gbit/s channels, exploiting slow light enhanced four-wave mixing in a dispersion engineered, 96 μm long planar photonic crystal waveguide. We report error-free (bit error rate<10??) operation of all 16 demultiplexed channels, with a power penalty of 2.2-2.4 dB, highlighting the potential of these structures as a platform for ultracompact all-optical nonlinear processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号