首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypericin, a polycyclic quinone obtained from plants of the genus Hypericum, has been shown to be a promising photosensitizer. We investigated the combination of hypericin-photodynamic therapy (PDT) and a bioreductive drug mitomycin C (MMC) in the present study. The radiation-induced fibrosarcoma-1 tumors were exposed to laser light (120 J/cm2 at 595 nm) 24 h after an intravenous injection of hypericin (1 mg/kg). Hypericin-PDT alone significantly decreased tumor perfusion and oxygen tension as demonstrated by India ink staining technique and OxyLite pO2 measurement, respectively. The in vivo-in vitro cell-survival assay revealed about 60% direct tumor cell killing immediately after PDT. No significant delayed tumor cell death was observed after PDT, which suggests that vascular damage does not contribute significantly to the overall tumor cell death. Injection of a 2.5 mg/kg dose of MMC 20 min before light application significantly decreased tumor cell survival and delayed tumor growth compared with PDT or MMC alone. No greater skin reaction was observed after the combination of MMC and PDT than after PDT alone. Our study demonstrates that combining hypericin-PDT with MMC can be effective in enhancing tumor response with little side effect.  相似文献   

2.
We have demonstrated that lung‐sparing surgery with intraoperative photodynamic therapy (PDT) achieves remarkably extended survival for patients with malignant pleural mesothelioma (MPM). Nevertheless, most patients treated using this approach experience local recurrence, so it is essential to identify ways to enhance tumor response. We previously reported that PDT transiently activates EGFR/STAT3 in lung and ovarian cancer cells and inhibiting EGFR via erlotinib can increase PDT sensitivity. Additionally, we have seen higher EGFR expression associating with worse outcomes after Photofrin‐mediated PDT for MPM, and the extensive desmoplastic reaction associated with MPM influences tumor phenotype and therapeutic response. Since extracellular matrix (ECM) proteins accrued during stroma development can alter EGF signaling within tumors, we have characterized novel 3D models of MPM to determine their response to erlotinib combined with Photofrin‐PDT. Our MPM cell lines formed a range of acinar phenotypes when grown on ECM gels, recapitulating the locally invasive phenotype of MPM in pleura and endothoracic fascia. Using these models, we confirmed that EGFR inhibition increases PDT cytotoxicity. Together with emerging evidence that EGFR inhibition may improve survival of lung cancer patients through immunologic and direct cell killing mechanisms, these results suggest erlotinib‐enhanced PDT may significantly improve outcomes for MPM patients.  相似文献   

3.
Tumor hypoxia, either preexisting or as a result of oxygen depletion during photodynamic therapy (PDT) light irradiation, can significantly reduce the effectiveness of PDT-induced cell killing. To overcome tumor hypoxia and improve tumor cell killing, we propose using supplemental hyperoxygenation during Photofrin-PDT. The mechanism for the tumor cure enhancement of the hyperoxygenation-PDT combination is investigated using an in vivo-in vitro technique. A hypoxic tumor model was established by implanting mammary adenocarcinoma in the hind legs of mice. Light irradiation (200 J/cm2 at either 75 or 150 mW/cm2), under various oxygen supplemental conditions (room air, carbogen, 100% normobaric or hyperbaric oxygen), was delivered to animals that received 12.5 mg/kg Photofrin 24 h before light irradiation. Tumors were harvested at various time points after PDT and grown in vitro for colony formation analysis. Treated tumors were also analyzed histologically. The results show that when PDT is combined with hyperoxygenation, the hypoxic condition could be improved and the cell killing rate at various time points after PDT could be significantly enhanced over that without hyperoxygenation, suggesting an enhanced direct and indirect cell killing associated with high-concentration oxygen breathing. This study further confirms our earlier observation that when a PDT treatment is combined with hyperoxygenation it can be more effective in controlling hypoxic tumors.  相似文献   

4.
An important goal of photodynamic therapy (PDT) for treatment of various cancers is to shorten PDT-performing time and simultaneously enhance PDT efficacy. Here, we investigated the nontumor tissue distribution of and the tumor vascular damage caused by a new photosensitizer, DH-I-180-3, in mice with implanted EMT6 mammary tumor cells. In addition, we performed cell-based assays to evaluate the basic antitumor effect of DH-I-180-3/PDT in EMT6 cells. After administration of PDT, the type of cell death was characterized to be apoptosis, and a change in the mitochondrial membrane potential was also observed within minutes. On the other hand, tumor growth was remarkably retarded in vivo in mice that received DH-I-180-3/PDT, compared with mice in the control group, which were exposed to light irradiation alone. Finally, tumors in some mice nearly healed. The antitumor drug reached a maximum concentration approximately 3 h after administration. However, PDT was most effective when there was substantial accumulation of DH-I-180-3 in the tumor vasculature and in healthy tissue. The histological demonstration provided further evidence of tumor vascular damage. On the basis of these findings, we suggest that PDT with the photosensitizer DH-I-180-3 induces vascular damage with blood vessel shutdown, in addition to direct killing of tumor cells, in mice.  相似文献   

5.
Tumor recurrence due to incomplete eradication of tumor cells is a major problem facing current cancer therapies. To overcome this problem, it is necessary to enhance cell killing and/or prevent cell regrowth after treatment. Because phosphatidylinositol 3-kinases (PI3K) pathway plays an important role in stimulating cell survival and growth, we studied the feasibility of using a PI3K pathway inhibitor NVP-BEZ235 (BEZ235) to enhance the effectiveness of vascular-targeted photodynamic therapy (vPDT) with verteporfin. We found that BEZ235 or PDT alone significantly inhibited cell growth in both SVEC endothelial and PC-3 prostate cancer cells, although SVEC cells appeared to be more responsive than PC-3 cells. Autophagy was detected after both BEZ235 and verteporfin-PDT in both cell lines. Autophagy appeared to protect cells from PDT-induced cell death because inhibition of autophagy increased cell death. Autophagic flux assay revealed that PDT actually decreased autophagic flux especially at a high dose of verteporfin. Combination of BEZ235 and PDT caused greater inhibition of PI3K signaling pathway, leading to enhanced cell growth inhibition in both cell lines. SVEC cells exhibited a higher sensitivity towards such a combination than PC-3 cells. Our data indicated that BEZ235 in combination with PDT provides a promising approach of enhancing therapeutic response.  相似文献   

6.
Photodynamic therapy (PDT) is a promising modality for the treatment of solid tumors that combines a photosensitizing agent and light to produce cytotoxic reactive oxygen species that lead to tumor cell death. The recent introduction of bioluminescence imaging (BLI), involving the use of the luciferase gene (luc) transferred into target tumor cells, followed by systemic administration of luciferin and detection of the emitted visible chemiluminescence photons, offers the potential for longitudinal imaging of tumor growth and therapeutic response in single animals. We demonstrate in this study the first results of the use of BLI to assess the response of an intracranial brain tumor model (9L rat gliosarcoma) to aminolevulinic acid (ALA)-mediated PDT. Complementary in vitro experiments with the luciferase-transfected 9L cells show that the decrease in the luminescent signal after PDT correlates with cell kill. In vivo imaging shows a decrease in the BLI signal from the tumor after ALA-PDT treatment, followed by tumor regrowth. Furthermore, preliminary studies using cells transfected with a hypoxia-responsive vector show an increase in bioluminescence within 4 h after Photofrin-mediated PDT, demonstrating the ability to observe stress-gene responses. These results suggest that BLI can be used to provide spatiotemporal information of intracranial brain tumor responses after PDT and may serve as a valuable response-endpoint measure.  相似文献   

7.
The objective of the present study was to investigate the treatment of 9L gliosarcoma brain tumor in the rat with the combination of surgical resection and photodynamic therapy (PDT). Nude rats with intracranial 7-day-old 9L gliomas were randomly subjected to no treatment, PDT alone (Photofrin: 2 mg kg(-1), optical: 80 J cm(-2)), surgical resection alone or resection combined with 2 mg kg(-1) Photofrin-mediated PDT at an optical dose of 80 J cm(-2). All animals were sacrificed 14 days after tumor implantation. Hematoxylin-and-eosin and immunohistochemical stainings were performed to assess the tumor volume and the expression of vascular endothelial growth factor (VEGF) in the brain adjacent to the tumor (BAT) as well as the tumor cell apoptosis and proliferation. Our data show that both surgical resection alone and PDT alone significantly decreased tumor volume, but furthermore, surgical resection combined with PDT significantly reduced the tumor volume and reduced local tumor infiltration compared to either surgical resection or PDT treatment alone. PDT treatment with or without resection increased tumor apoptosis, but resection alone did not alter the tumor cell apoptosis compared with a nontreatment control group. Both surgical resection alone and PDT alone induced a significant increase in VEGF expression in the BAT; however intraoperative PDT did not further increase VEGF expression, compared with surgery alone or PDT alone. No significant differences were found in tumor cell proliferation as indicated by Ki67 immunoreactivity among the four groups. Our results suggest that PDT enhances the efficacy of surgical resection in the management of malignant gliomas without increasing VEGF expression in the BAT.  相似文献   

8.
Photodynamic therapy (PDT) regimens that conserve tumor oxygenation are typically more efficacious, but require longer treatment times. This makes them clinically unfavorable. In this report, the inverse pairing of fluence rate and photosensitizer dose is investigated as a means of controlling oxygen depletion and benefiting therapeutic response to PDT under conditions of constant treatment time. Studies were performed for Photofrin-PDT of radiation-induced fibrosarcoma tumors over fluence rate and drug dose ranges of 25-225 mW cm(-2) and 2.5-10 mg kg(-1), respectively, for 30 min of treatment. Tumor response was similar among all inverse regimens tested, and, in general, tumor hemoglobin oxygen saturation (SO2) was well conserved during PDT, although the highest fluence rate regimen (225 mWx2.5 mg) did lead to a modest but significant reduction in SO2. Regardless, significant direct tumor cell kill (>1 log) was detected during 225 mWx2.5 mg PDT, and minimal normal tissue toxicity was found. PDT effect on tumor oxygenation was highly associated with tumor response at 225 mWx2.5 mg, as well as in all other regimens tested. These data suggest that high fluence rate PDT can be carried out under oxygen-conserving, efficacious conditions at low photosensitizer dose. Clinical confirmation and application of these results will be possible through use of minimally invasive oxygen and photosensitizer monitoring technologies, which are currently under development.  相似文献   

9.
Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.  相似文献   

10.
Under the influence of electric pulses cells undergo membrane electroporation (EP), which results in increased permeability of the membrane to exogenous compounds. EP is applied in oncology as a method to enhance delivery of anticancer drugs. For that reason it was essential to combine photodynamic tumor therapy (PDT)--the cancer treatment method based on the use of photosensitizers that localize selectively in malignant tumors and become cytotoxic when exposed to light, and EP, with the aim to enhance the delivery of photosensitizers into the tumor and therefore to increase the efficacy of PDT. Thus, the aim of study was to evaluate the cytotoxic effect of PDT in combination with EP. A Chinese hamster lung fibroblast cell line (DC-3F) was used. The cells were affected by photosensitizers chlorin e(6) (C e(6)) at the dose of 10 mug/ml and aluminium phthalocyanine tetrasulfonate (AlPcS4) at the dose of 50 microg/ml. Immediately after adding of photosensitizers the cells were electroporated with 8 electric pulses at 1200 V/cm intensity, 0.1 ms duration, 1 Hz frequency. Then, after 20 min of incubation the cells were irradiated using a light source--a visible light passing through a filter (KC 14, emitted light from 660 nm). The fluence rate at the level of the cells was 3 mW/m(2). Cytotoxic effect on cells viability was evaluated using MTT assay. Our in vitro data showed that the cytotoxicity of PDT in combination with EP increases fourfold on the average. Based on the results we suggest that EP could enhance the effect of PDT.  相似文献   

11.
Photodynamic therapy (PDT), in which 5‐ALA (a precursor for protoporphyrin IX, PpIX) is administered prior to exposure to light, is a nonscarring treatment for skin cancers. However, for deep tumors, ALA‐PDT is not always effective due to inadequate production of PpIX. We previously developed and reported a combination approach in which the active form of vitamin D3 (calcitriol) is given systemically prior to PDT to improve PpIX accumulation and to enhance PDT‐induced tumor cell death; calcitriol, however, poses a risk of hypercalcemia. Here, we tested a possible strategy to circumvent the problem of hypercalcemia by substituting natural dietary vitamin D3 (cholecalciferol; D3) for calcitriol. Oral D3 supplementation (10 days of a 10‐fold elevated D3 diet) enhanced PpIX levels 3‐ to 4‐fold, and PDT‐mediated cell death 20‐fold, in subcutaneous A431 tumors. PpIX levels and cell viability in normal tissues were not affected. Hydroxylated metabolic forms of D3 were only modestly elevated in serum, indicating minimal hypercalcemic risk. These results show that brief oral administration of cholecalciferol can serve as a safe neoadjuvant to ALA‐PDT. We suggest a clinical study, using oral vitamin D3 prior to PDT, should be considered to evaluate this promising new approach to treating human skin cancer.  相似文献   

12.
肿瘤微环境(TME)的复杂性,使得单一治疗方式很难实现完全治愈。 为此,构建了一种负载吲哚菁绿(ICG)的铁掺杂的聚2-硝基-1,4-苯二胺多功能纳米球Fe-PNPD-ICG(FPIs),用于光热(PTT)/光动力(PDT)/化学动力学(CDT)的联合治疗。 在808 nm激光器照射下,ICG作为光敏剂可以产生单线态氧,铁掺杂的聚2-硝基-1,4-苯二胺纳米球作为光热剂具有36.65%的光热转换效率。 FPIs一旦内化到肿瘤内,由Fe3+/Fe2+转化引发Fenton反应产生·OH实现化学动力学治疗,反应过程中可以清除TME中过表达的谷胱甘肽(GSH),从而降低肿瘤中的抗氧化能力。 同时,产生的氧气可以改善TME中乏氧情况,增强PDT的治疗效果。 因此,FPIs是PTT/PDT/CDT联合治疗的一种理想材料,在肿瘤治疗中具有潜在的应用前景。  相似文献   

13.
Photodynamic therapy (PDT) has extraordinary promise for the treatment of many cancers. However, its clinical progress is impaired by the intrinsic hypoxic tumor microenvironment that limits PDT efficacy and the safety concern associated with biological specificity of photosensitizers or vehicles. Now it is demonstrated that rationally designed DNA nanosponges can load and delivery photosensitizer effectively, target tumor precisely, and relieve hypoxia‐associated resistance remarkably to enhance the efficacy of PDT. Specifically, the approach exhibits a facile assembly process, provides programmable and versatile nanocarriers, and enables robust in vitro and in vivo anti‐cancer efficacy with excellent biosafety. These findings represent a practical and safe approach by designer DNA nanoassemblies to combat cancer effectively and suggest a powerful strategy for broad biomedical application of PDT.  相似文献   

14.
Targeting the tumor microenvironment (TME) provides opportunities to modulate tumor physiology, enhance the delivery of therapeutic agents, impact immune response and overcome resistance. Photodynamic therapy (PDT) is a photochemistry-based, nonthermal modality that produces reactive molecular species at the site of light activation and is in the clinic for nononcologic and oncologic applications. The unique mechanisms and exquisite spatiotemporal control inherent to PDT enable selective modulation or destruction of the TME and cancer cells. Mechanical stress plays an important role in tumor growth and survival, with increasing implications for therapy design and drug delivery, but remains understudied in the context of PDT and PDT-based combinations. This review describes pharmacoengineering and bioengineering approaches in PDT to target cellular and noncellular components of the TME, as well as molecular targets on tumor and tumor-associated cells. Particular emphasis is placed on the role of mechanical stress in the context of targeted PDT regimens, and combinations, for primary and metastatic tumors.  相似文献   

15.
The concept of metronomic photodynamic therapy (mPDT) is presented, in which both the photosensitizer and light are delivered continuously at low rates for extended periods of time to increase selective tumor cell kill through apoptosis. The focus of the present preclinical study is on mPDT treatment of malignant brain tumors, in which selectivity tumor cell killing versus damage to normal brain is critical. Previous studies have shown that low‐dose PDT using 5‐aminolevulinic acid (ALA)‐induced protoporphyrin IX(PpIX) can induce apoptosis in tumor cells without causing necrosis in either tumor or normal brain tissue or apoptosis in the latter. On the basis of the levels of apoptosis achieved and model calculations of brain tumor growth rates, metronomic delivery or multiple PDT treatments, such as hyperfractionation, are likely required to produce enough tumor cell kill to be an effective therapy. In vitro studies confirm that ALA‐mPDT induces a higher incidence of apoptotic (terminal deoxynucleotidyl transferase‐mediated 2′‐deoxyuridine 5′‐triphosphate, sodium salt nick‐end labeling positive) cells as compared with an acute, high‐dose regimen (ALA‐αPDT). In vivo, mPDT poses two substantial technical challenges: extended delivery of ALA and implantation of devices for extended light delivery while allowing unencumbered movement. In rat models, ALA administration via the drinking water has been accomplished at very high doses (up to 10 times therapeutic dose) for up to 10 days, and ex vivo spectro‐fluorimetry of tumor (9L gliosarcoma) and normal brain demonstrates a 3–4 fold increase in the tumor‐to‐brain ratio of PpIX concentration, without evidence of toxicity. After mPDT treatment, histological staining reveals extensive apoptosis within the tumor periphery and surrounding microinvading colonies that is not evident in normal brain or tumor before treatment. Prototype light sources and delivery devices were found to be practical, either using a laser diode or light‐emitting diode (LED) coupled to an implanted optical fiber in the rat model or a directly implanted LED using a rabbit model. The combined delivery of both drug and light during an extended period, without compromising survival of the animals, is demonstrated. Preliminary evidence of selective apoptosis of tumor under these conditions is presented.  相似文献   

16.
Photodynamic therapy (PDT) is a potentially immunogenic and FDA‐approved antitumor treatment modality that utilizes the spatiotemporal combination of a photosensitizer, light and oftentimes oxygen, to generate therapeutic cytotoxic molecules. Certain photosensitizers under specific conditions, including ones in clinical practice, have been shown to elicit an immune response following photoillumination. When localized within tumor tissue, photogenerated cytotoxic molecules can lead to immunogenic cell death (ICD) of tumor cells, which release damage‐associated molecular patterns and tumor‐specific antigens. Subsequently, the T‐lymphocyte (T cell)–mediated adaptive immune system can become activated. Activated T cells then disseminate into systemic circulation and can eliminate primary and metastatic tumors. In this review, we will detail the multistage cascade of events following PDT of solid tumors that ultimately lead to the activation of an antitumor immune response. More specifically, we connect the fundamentals of photochemically induced ICD with a proposition on potential mechanisms for PDT enhancement of the adaptive antitumor response. We postulate a hypothesis that during the course of the immune stimulation process, PDT also enriches the T‐cell repertoire with tumor‐reactive activated T cells, diversifying their tumor‐specific targets and eliciting a more expansive and rigorous antitumor response. The implications of such a process are likely to impact the outcomes of rational combinations with immune checkpoint blockade, warranting investigations into T‐cell diversity as a previously understudied and potentially transformative paradigm in antitumor photodynamic immunotherapy.  相似文献   

17.
The objective of this study was to evaluate the effects of combination therapy with photodynamic therapy (PDT) and a novel antiangiogenic regimen using monoclonal antibodies against both vascular endothelial growth factor receptors (VEGFR)-1 (MF1) and VEGFR-2 (DC101) on intracranial glioblastoma xenografts in nude mice. Nude mice bearing intracerebral U87 glioblastoma were treated with PDT and the antiangiogenic regimen (MF1 and DC101) either alone or in combination, while those left untreated served as tumor controls. Tumor volume and animal survival time were analyzed to evaluate the outcome of different treatment modalities. In addition, the immunohistochemical expression of VEGF in the brain adjacent to the tumor, von Willebrand factor (vWF), apoptotic, and proliferative markers in the tumor area were examined. PDT or MF1 + DC101 alone significantly reduced the tumor volume and prolonged the survival time of glioma-implanted animals. Combined therapy markedly reduced tumor volume and increased survival time with significantly better outcomes than both monotherapies. Both vWF and VEGF levels significantly increased after PDT while they both significantly decreased after antiangiogenic treatment, compared with no treatment. PDT plus antiangiogenic treatment led to significant decreases in both vWF and VEGF expression, compared with PDT alone. Either PDT or antiangiogenic treatment alone significantly increased tumor cell apoptosis compared with no treatment, while combination therapy resulted in further augmentation of apoptosis. Antiangiogenic treatment with or without PDT significantly decreased tumor cell proliferation, compared with either no treatment or PDT alone. In summary, we demonstrate both significant inhibition of tumor growth and extended survival of mice treated by the combination therapy with PDT and antiangiogenic agents, compared with each single treatment, suggesting that the combination therapy may be a promising strategy to improve clinical outcomes in glioblastoma.  相似文献   

18.
Abstract— Photodynamic therapy (PDT) has been proven as a method of tumor eradication and is currently being used clinically to treat a wide variety of malignancies. Although it is understood that the interaction of light and sensitizer results in the production of potentially damaging oxygen species, the mechanism by which tumors are destroyed has yet to be defined fully. Using a new porphyrin sensitizer, benzoporphyrin derivative(BPD), we examined protein expression in murine tumor cells following treatment as an indication of molecular changes to target tissue concurrent with PDT-mediated damage. In order to assess the relevance of the results obtained using an in vitro PDT model, metabolic labeling of proteins synthesized subsequent to PDT was performed both in tumor cells grown and treated in tissue culture dishes and in cells explanted from PDT-treated solid tumors. We observed that the oxidative stress associated with PDT-resulted in the induction of a number or proteins corresponding to a set of heat-shock or stress proteins, and that the pattern of expression was similar when tumor cells were treated in vitro and in vivo . These results support the use of in vitro models in the dissection of the molecular erects of PDT and provide the foundation for future experiments that will examine the role of the immune system in tumor eradication by PDT.  相似文献   

19.
Photodynamic therapy (PDT) is an established therapeutic modality that uses nonionizing near-infrared light to activate photocytotoxicity of endogenous or exogenous photosensitizers (PSs). An ongoing avenue of cancer research involves leveraging PDT to stimulate antitumor immune responses; however, these effects appear to be best elicited in low-dose regimens that do not provide significant tumor reduction using conventional, nonspecific PSs. The loss of immune enhancement at higher PDT doses may arise in part from indiscriminate damage to local immune cell populations, including tumor-infiltrating T cells. We previously introduced “tumor-targeted, activatable photoimmunotherapy” (taPIT) using molecular-targeted and cell-activatable antibody–PS conjugates to realize precision tumor photodamage with microscale fidelity. Here, we investigate the immune cell sparing effect provided by taPIT in a 3D model of the tumor immune microenvironment. We report that high-dose taPIT spares 25% of the local immune cell population, five times more than the conventional PDT regimen, in a 3D coculture model incorporating epithelial ovarian cancer cells and T cells. These findings suggest that the enhanced selectivity of taPIT may be utilized to achieve local tumor reduction with sparing of intratumor effector immune cells that would otherwise be lost if treated with conventional PDT.  相似文献   

20.
《中国化学快报》2020,31(7):1709-1716
Photodynamic therapy (PDT) is a promising alternative approach for effective cancer treatment, which can directly destroy local tumor cells due to the generation of cytotoxic singlet oxygen and reactive oxygen species (ROS) in the tumor cells. Intriguingly, PDT-mediated cell death is also associated with anti-tumor immune response. However, immunosuppression of tumor microenvironment is able to limit the immune response induced by PDT, it is therefore necessary to combine with immunocheckpoint inhibitor and immunoadjuvant for synergistic treatment of tumors. Herein, the recent advances of PDT, immunotherapy, and photodynamic immunotherapy are reviewed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号