首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以小角度近似为条件,利用逐级递归的方法推导了激光信号在沙尘天气下的辐射传输方程,得到了多次散射下的光强分布函数,以及波长和不对称因子对光强的影响。同时,通过比较不同散射相位函数及沙尘粒子的散射特性,采用了修正的TTHG(Two Term Henyey-Greenstein)散射相位函数,更加全面地反映了沙粒散射后光强的变化规律。研究结果表明,随着光学厚度的增加,散射光强呈现出先增大后减小的趋势,且多次散射的比重相比于单次散射而言逐渐增大。当散射次数超过3次以上时,接收光强的变化可以忽略不计。相对于Mie理论下的结果而言,采用小角度近似理论,从辐射传输的角度分析沙粒的散射特性误差更小,实现了准确描述沙尘天气下激光信号传输特性的目的。  相似文献   

2.
We considered light scattering by a polydisperse ensemble of droplets of a nematic liquid crystal. To model light scattering by a monolayer of polymer-dispersed spherical droplets of a nematic liquid crystal with cylindrical symmetry of its internal structure, we proposed a semianalytical modeling method. The method is based on interference approximation of the theory of multiple wave scattering, anomalous diffraction approximation, and effective-medium approximation. The method takes into account cooperative optical effects in concentrated, partially ordered layers and can be used to analyze the small-angle structure of the intensity of scattered radiation in relation to the concentration, size, polydispersity of liquid crystal droplets, orientation of their optical axes, and refractive indices of the liquid crystal and polymer. The obtained relations can be applied to solving direct and inverse problems of light scattering in composite liquid crystal materials using data of polarization measurements. We present graphical results of solving the direct problem for components of the polarization vector of scattered wave. These results illustrate the formation of an angular structure for monolayers with a high concentration of polydisperse droplets of the liquid crystal in the range of small scattering angles (0 < θ s ≤ 8°).  相似文献   

3.
4.
Ding C  Cai Y  Korotkova O  Zhang Y  Pan L 《Optics letters》2011,36(4):517-519
The scattering of a partially coherent plane-wave pulse on a Gaussian-correlated, quasi-homogeneous random medium is investigated. The analytical expressions for the temporal coherence length and the pulse duration of the scattered field are derived. We demonstrate that the scattering-induced changes in the temporal coherence length and the pulse duration may be used to determine the correlation function of the scattering potential of the medium.  相似文献   

5.
Abstract

The temporal fluctuations in the intensity of light scattered by a moving layer of emulsions and suspensions containing Brownian particles are investigated experimentally, and a comparison is made with light scattered by a translating phase screen. The intensity fluctuations of the scattered light are detected through an imaging system, which collects the light emanating only from a limited volume in the medium. The effect of translational motion of the particle layer on the decay rate of the autocorrelation function of intensity fluctuations depends on the illuminating form of a laser beam and on the point spread function of the imaging system. The Brownian motion of the particles causes the scattered light to fluctuate more rapidly than that arising from the translating phase screen. In the multiple-scattering regime, the influence of this diffusional motion increases with an increase of the particle concentration in the layer.  相似文献   

6.
The temporal fluctuations in the intensity of light scattered by a moving layer of emulsions and suspensions containing Brownian particles are investigated experimentally, and a comparison is made with light scattered by a translating phase screen. The intensity fluctuations of the scattered light are detected through an imaging system, which collects the light emanating only from a limited volume in the medium. The effect of translational motion of the particle layer on the decay rate of the autocorrelation function of intensity fluctuations depends on the illuminating form of a laser beam and on the point spread function of the imaging system. The Brownian motion of the particles causes the scattered light to fluctuate more rapidly than that arising from the translating phase screen. In the multiple-scattering regime, the influence of this diffusional motion increases with an increase of the particle concentration in the layer.  相似文献   

7.
Waves scattered by a weakly inhomogeneous random medium contain a predominant single-scattering contribution as well as a multiple-scattering contribution which is usually neglected, especially for imaging purposes. A method based on random matrix theory is proposed to separate the single- and multiple-scattering contributions. The experimental setup uses an array of sources/receivers placed in front of the medium. The impulse responses between every couple of transducers are measured and form a matrix. Single-scattering contributions are shown to exhibit a deterministic coherence along the antidiagonals of the array response matrix, whatever the distribution of inhomogeneities. This property is taken advantage of to discriminate single- from multiple-scattered waves. This allows one to evaluate the absorption losses and the scattering losses separately, by comparing the multiple-scattering intensity with a radiative transfer model. Moreover, the relative contribution of multiple scattering in the backscattered wave can be estimated, which serves as a validity test for the Born approximation. Experimental results are presented with ultrasonic waves in the megahertz range, on a synthetic sample (agar-gelatine gel) as well as on breast tissues. Interestingly, the multiple-scattering contribution is found to be far from negligible in the breast around 4.3 MHz.  相似文献   

8.
以水中紧密排列的平行圆柱体群为对象,研究平面超声脉冲经多重散射后的透射波性质,通过分析其中头波和散射波的特征获得对应的多重散射参数.对直径随机分布、位置无序排列、数量密度约100个/cm2、面积占空比约0.53的非接触圆柱体群,采用中心频率2.5 MHz的宽带脉冲波入射。为解决透射信号在时域表现出随机性的问题,将散射体尺寸、分布都相同但位置分布不同的多个模型仿真的透射波叠加平均后用于分析.在频域对头波的宽带衰减系数进行分析,并在时域研究散射波声强的时间演化曲线,获得了系统的弹性平均自由程、传输平均自由程等多重散射参数。经多重散射后,透射波中的头波表现出相干性,由不相干近似理论可对其对应的散射参数进行定性描述;散射波是不相干的,其对应的多重散射参数可近似利用扩散近似理论获得。   相似文献   

9.
Consideration of the vertical sound velocity profile is highly important for solving problems of sound propagation in waveguides and scattering problems. A pulsed echo signal reflected from a spherical scatterer in a waveguide is modeled for the case of a waveguide characterized by sound velocity increasing with depth. The simplest model of the medium is considered in which the scatterer, the source, and the receiver are positioned in a layer with constant sound velocity. Below this layer, the sound velocity increases with depth so that the square of refractive index varies according to linear law. The scattering coefficients for the sphere are calculated using the normal wave method. The number of normal waves forming the echo signal is determined by the preset directionality of the source. Modeling is performed in a frequency band of 70?90 kHz for distances between the scatterer and the transmitter-receiver within 500?1000 m. The transmitted signal has the form of a pulse with cosine envelope and central frequency of 80 kHz.  相似文献   

10.
By starting from the matrix forms of the two coupled, inhomogeneous integral equations for the values of the magnetic field and its normal derivative on a one-dimensional, rough metal surface, or for the values of the electric field and its normal derivative on such a surface, we have obtained an equivalent pair of equations for these quantities in which the inhomogeneous terms are just the Kirchhoff approximations to them. The new pair of equations for the surface values of the magnetic field and its normal derivative is solved iteratively to generate a multiple-scattering expansion for the scattering amplitude when p-polarized light is scattered from a large RMS height, large RMS slope, one-dimensional, random silver surface, with the plane of incidence perpendicular to the generators of the surface. It is shown that the Kirchhoff approximation to the contribution to the mean differential reflection coefficient from the incoherent component of the scattered light displays no evidence of enhanced backscattering. However, the pure double-scattering contribution already displays this effect, stamping it as a multiple-scattering phenomenon.  相似文献   

11.
Multiple backscattering of light by a layer of a discrete random medium is considered. A brief derivation of equations for describing the coherent and incoherent components of scattered light is presented. These equations are solved numerically in the approximation of doubled scattering of light by a semi-infinite medium of spherical scatterers having a size comparable with the wavelength in order to study the effect of the properties of particles on the angular dependence of interference effects. Calculations show that the half-width of the interference peak decreases upon an increase in lateral scattering by particles and that the degree of polarization has a complex angular dependence on the properties of the particles. For an optically thin layer of the medium, the relations defining the interference peak half-width and the scattering angle upon extreme linear polarization as functions of the effective refractive index are given.  相似文献   

12.
Light scattering is a useful diagnostic tool for characterization of particles. Direct scattering measurements for arbitrarily shaped micro-scale particles is difficult due to small-scale limitations. Microwave analogy is a convenient approach to realize such measurements as it enables realization of analogous experiments with larger model particles in a spectral domain where wavelengths are on centimeter scale. In the present study a test model analogous to light scattering by a micro-scale aggregate of dielectric spheres was constructed and experimentally characterized in the microwave regime. Measured amplitude and phase of the scattered field were compared with theoretical predictions obtained from quasi-exact multiple-scattering T-matrix method and discrete dipole approximation (DDA). Excellent agreement demonstrates the validities of both the experiment and the models.  相似文献   

13.
We report an observation of femtosecond optical fluctuations of transmitted light when a coherent femtosecond pulse propagates through a random medium. They are a result of random interference among scattered waves coming from different trajectories in the time domain. Temporal fluctuations are measured by using cross-correlated frequency optical gating. It is shown that a femtosecond pulse will be broadened and distorted in pulse shape while it is propagating in random medium. The real and imaginary components of transmitted electric field are also distorted severely. The average of the fluctuated transmission pulses yields a smooth profile, probability functions show good agreement with Gaussian distribution.  相似文献   

14.
An object consisting of small inhomogeneities embedded in a highly scattering solution was imaged using measurements of the time-resolved transmitted intensity of picosecond pulses of near-infrared light. Data acquisition involved translating the object in two orthogonal directions across the beam, and recording the temporal distribution of transmitted light at a series of discrete positions. Images were constructed from the total transmitted light, the first four moments of the temporal distribution, and from parameters derived from a comparison of the distribution with an analytical model, based on the diffusion approximation to the radiative transfer theory. The results show that the optical properties along a line-of-sight between source and detector influence some of these characteristics more than others.  相似文献   

15.
Abstract

By starting from the matrix forms of the two coupled, inhomogeneous integral equations for the values of the magnetic field and its normal derivative on a one-dimensional, rough metal surface, or for the values of the electric field and its normal derivative on such a surface, we have obtained an equivalent pair of equations for these quantities in which the inhomogeneous terms are just the Kirchhoff approximations to them. The new pair of equations for the surface values of the magnetic field and its normal derivative is solved iteratively to generate a multiple-scattering expansion for the scattering amplitude when p-polarized light is scattered from a large RMS height, large RMS slope, one-dimensional, random silver surface, with the plane of incidence perpendicular to the generators of the surface. It is shown that the Kirchhoff approximation to the contribution to the mean differential reflection coefficient from the incoherent component of the scattered light displays no evidence of enhanced backscattering. However, the pure double-scattering contribution already displays this effect, stamping it as a multiple-scattering phenomenon.  相似文献   

16.
Phase variations of a wave transmitted through a monolayer of spherical scatterers are studied as functions of size, optical constants, and particle concentration for light incident normally to the surface of the layer. The analysis is performed in the quasi-crystal approximation of the theory of multiple scattering of waves and in the single scattering approximation. The results obtained allow one to estimate the limits of applicability of the single scattering approximation to layers with partial ordering of scatterers in analysis of the transmitted wave phase. The variations of the phase of the wave in the range of the parameters where the coherent component of the transmitted beam exhibits quenching are studied. It is shown that small variations in the refractive index of the particles may give rise to strong variations of the phase. This effect can be used for phase modulation of light beams, e.g., in liquid crystal films controlled by an electric (or magnetic) field.  相似文献   

17.
刘文军  高仁喜  曲士良 《中国物理 B》2010,19(2):24204-024204
The femtosecond temporal speckle field of a random medium is studied theoretically and experimentally. Femtosecond temporal speckle arises from the interference of multiple randomly scattered electric fields. The femtosecond temporal speckle field is measured with a cross-correlation frequency-resolved optical gating method. The spatial average of the speckle field yields a smooth transmitted profile. The speckle field is a circular complex Gaussian variable because the scattered light beams from different trajectories have no correlation with each other. The field and the intensity profiles of individual speckle spots fluctuate randomly in time. The ensemble average of the temporal intensity profiles converges, thereby yielding the photon travel time probability distribution function.  相似文献   

18.
We consider monolayer polymer films with oriented droplets of a nematic liquid crystal (LC). Relations for the coherent transmission coefficients of a layer of oriented ellipsoidal droplets and for the intensity of light scattered by monolayers of spherical and spheroidal droplets have been obtained. The amplitude-phase screen model and the interference approximation of the theory of multiple wave scattering have been used. To describe light scattering by an individual ellipsoidal droplet with inhomogeneous surface binding, we have developed an anomalous diffraction approximation. For monolayers of spherical LC droplets, the coherent scattering coefficients and the angular scattering structure have been analyzed. The internal structure of nematic droplets have been calculated by the relaxation method based on the solution of the minimization problem of the free energy volume density. We have studied basic regular features of light scattering by a monolayer with homogeneous and inhomogeneous boundary conditions at the LC-polymer interface. We show that, for films that contain droplets with inhomogeneous boundary conditions of the tangentially normal type, the angular structure of the scattered light is asymmetric with respect to the polar scattering angle.  相似文献   

19.
For determining the optimum conditions of detecting the signal during acousto-optic visualization, the modulation characteristics of radiation of a laser beam crossed by a focused acoustic beam in a medium and scattered by this medium were studied. The characteristics were obtained by measuring the amplitude of the alternating-photocurrent component at the ultrasonic frequency as a function of the geometry of the experiment, the parameters of the scattering medium, and the laser radiation power. Special attention was given to the magnitude of the signal-to-noise ratio. A photodetector recording the field of the nonballistic component of the scattered radiation was positioned outside the geometrical sizes of the laser beam. The photocurrent component corresponding to this radiation at the ultrasonic frequency was used as a parameter of the acousto-optic visualization. Images of optically opaque objects immersed into a medium whose scattering parameters corresponded to the transition from the regime without scattering to the multiple-scattering regime were obtained.  相似文献   

20.
With an enough short-pulse incident to an individual particle, elementary scattering modes can be observed: internal or external reflection, refraction and diffraction. Simulation of pulse propagation in dense scattering medium is usually computed for large observation time, so that time delays of pulse interaction with the particles are negligible compared to propagation times between particle. A Monte Carlo method is proposed to compute the propagation of an incident 100 fs laser pulse in dense medium taking into account time-dependent scattering characteristics of particle: observation time of scattered light is less than 5000 fs. Two extreme cases are exemplified: predominance of direct and single-scattered photons appears in a thin time window for small particles (1 μm). On the contrary multiple scattering is always predominant and scrambles the transmitted signal for large particles (100 μm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号