首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work we have characterised the viscoelastic behaviour of paraffin crystals in three different complex crude oils, close to the gelation threshold and after curing the gels under quiescent isothermal conditions, by means of oscillatory shear measurements. An increase in gelation temperature is observed with increasing oils molecular weight. The interactions between wax crystals and the formation of the space-filling network of interlocking wax crystals are thus facilitated by the presence of paraffins with higher molecular weight. The apparent gelation time, obtained from isothermal curing experiments, decreases as the curing temperature was decreased, and it is highly temperature-dependent.The presence and the importance of the ageing of the wax were established under isothermal conditions. It must result from a coarsening of the crystallites presents in the oil and it is, more important, close to the gel point where its full development is very slow taking several days to occur. After ageing the gels, the connective domains or junction zones linking the crystal arrays fail when relatively small strains are applied to the system and the mechanical spectra of the gels reveal an imperfect elastic network, typical rheological characteristics of a particle gel. Despite the compositional differences among the samples, the similarity of their mechanical behaviour is quite remarkable indicating that in all cases the gel-like organisation of the waxy material results from the formation of identical structures in the different oils, which is related not only to the wax content but also to the presence of other material that may reduce the crystallinity of the structure.The low fractal dimensionality obtained indicates elongated substructures. These results, together with the very high elastic modulus obtained at low volume fractions of crystallised material, are indicative of network structures with high degree of porosity: a lattice of wax crystals with large spaces among them filled by the oil and non-precipitated material.This paper was presented at the first Annual European Rheology Conference (AERC) held in Guimarães, Portugal, September 11-13, 2003.  相似文献   

2.
The structural evolution of a maize flour was followed by means of oscillatory shear measurements during heating at a rate of 10 °C/min in presence of water. These measurements were performed in a special plate and plate vessel designed to prevent moisture loss. The phenomena of gelatinization and gelation were clearly identified and their connection with the moisture content also demonstrated. Moreover, the complex mechanisms involved in gelatinization and gelation in native starch were separated. Softening of the amylose zones, exchange of water and amylose within the starch granules followed by amylopectin melting leads to the gelation of starch.  相似文献   

3.
The rheological behavior of a waxy crude oil was investigated using a coaxial cylinder viscometer. Experimental flow curves were fitted with the Casson equation. The Casson model was modified to interpret the hysteresis between upward and downward curves obtained in a series of consecutive runs. At the same shear rate, the mean axial ratio of the flow unit related to a down-curve (↓) is smaller than that related to an equilibrium up-curve (↑). This results in a decrease of the Casson yield stress τc↓ with respect to τc↑. A certain ξ coefficient describing departure from the equilibrium mean axial ratio was introduced into the model. Values of ξ calculated from the Casson yield stresses agreed satisfactorily with the theoretically predicted ones. Deviations from the Casson model at low shear rates were also explained. Received: 28 July 1998 Accepted: 18 February 1999  相似文献   

4.
5.
The relaxation spectrum is estimated from dynamic experiments using Bayesian analysis and a new regularization constraint. In the Bayesian framework, a probability can be calculated for each estimate of the spectrum. This offers several advantages; (1) an optimal estimate of the relaxation spectrum may be calculated as the mean of a large number of estimates, and (2) reliable errors for the optimal estimate can be provided using the deviation of all estimates from the mean. Furthermore, the Bayesian approach (3) gives an estimate of the overall noise level of the experiment, which is usually an important but unknown parameter for the calculation of relaxation spectra from dynamic experiments by indirect methods (determining the regularization parameter), and finally, (4) the information content in a given set of experimental data can be quantified. The validity of the Bayesian approach is demonstrated using simulated data.  相似文献   

6.
When an object moves, ultrasonic speckles backscattered from its surface will follow the object to move. From the Kirchhoff diffraction theory and the correlation principles of random signals, the necessary condition for keeping the correlativity between the speckle fields before and after the objective displacement was deduced. Based on this condition, the formulas for the relationship between the speckle displacement and the objective displacement were obtained. Practical measurement was performed. Ultrasonic digital speckle correlation method was used to measure the in-plane displacement and out-of-plane displacement of an object. The displacements of the objective surface were evaluated after the displacements of the speckles were determined.This method can be also used to measure the displacements of an inner objective surface. A mountain-climbing search method was proposed, which enabled us to find the maximum correlation coefficient in the correlation operation quickly and efficiently. The experimental results showed good agreement with the theoretical predictions.  相似文献   

7.
A device for impact compression experiments is the split Hopkinson pressure bar with a refrigerating attemperator. Data for incident and reflected waves are obtained by the measuring technique with strain gauges, and data for transmitted waves are obtained by the measuring technique with semiconductor gauges. Static compression tests of frozen clay are conducted at an identical temperature and different strain rates of 0.001 and 0.01 sec −1 . Dynamic stress-strain curves are obtained at strain rates of 360–1470 sec −1 . The low and high temperatures correspond to high and low strain rates, respectively. It is shown that both the temperature and strain rate affect the frozen soil deformation process. Different dynamic stress-strain curves obtained at the same temperature but different strain rates are found to converge. The test results indicate that frozen soil has both temperature-brittleness and impact-brittleness.  相似文献   

8.
A methodology for determining the cohesive fracture parameters associated with pull-out of spot welds is presented. Since failure of a spot weld by pull-out occurs by mixed-mode fracture of the base metal, the cohesive parameters for ductile fracture of an aluminum alloy were determined and then used to predict the failure of two very different spot-welded geometries. The fracture parameters (characteristic strength and toughness) associated with the shear and normal modes of ductile fracture in thin aluminum alloy coupons were determined by comparing experimental observations to numerical simulations in which a cohesive-fracture zone was embedded within a continuum representation of the sheet metal. These parameters were then used to predict the load–displacement curves for ultrasonically spot-welded joints in T-peel and lap-shear configurations. The predictions were in excellent agreement with the experimental data. The results of the present work indicate that cohesive-zone models may be very useful for design purposes, since both the strength and the energy absorbed by plastic deformation during weld pull-out can be predicted quite accurately.  相似文献   

9.
Structural health monitoring (SHM) of any mechanical component is compulsory for its efficient and long-term performance. One of the major challenges to apply SHM technique in real-time inspections is variation in environmental and operating conditions (EOCs). Sometimes the effect of this variation in EOCs is so severe that it influences the SHM system’s response and reduces the accuracy of the inspection process. The goal of current research is to investigate experimentally the impact of environmental temperature on the ultrasonic guided wave signal during damage detection. According to the characteristic of breathing phenomenon of fatigue crack caused by the applied temperature (30 °C–180 °C) under operation condition, behavior of reflection and transmission signal is analyzed in terms of amplitude and group velocity. Based on experiment findings, a wave velocity function has been generated in the Matlab® environment to compute the velocity of acquired signal considering the effect of both temperature and excitation frequency. A corresponding sequence curve is drawn which illustrates that the proposed function is valid when the operating temperature is less than 130 °C because sensor bonding’s characteristics are affected by the further increment in temperature and consequently it would become difficult to illuminate the sole impact of temperature on damage detection results. Impact of temperature on examined material properties and sensor’s bonding strength is also observed in the current study. Analysis of dispersion curves is performed to examine the individual behavior of S0 and A0 wave modes with temperature and to determine the temperature invariant points to reduce the influence of environmental temperature in SHM. Hence current study not only evaluates the impact of temperature on damage detection but also provides an optimal baseline for thermal attenuation in real-time ultrasonic guided wave inspections.  相似文献   

10.
The paper focuses on the development of efficient methods for solving inverse problems of 3D ultrasound tomography as coefficient inverse problems for the wave equation. The idea of standard tomographic approaches to solving tomography problems is to analyze the 3D objects by their two-dimensional cross sections. This scheme is perfectly implemented in the case of X-ray tomography. Unlike X-ray tomography, ultrasonic tomography has to deal with diffraction and refraction effects, which limit the possibility of solving 3D problems by analyzing 2D cross sections. We propose efficient methods for solving inverse problems of ultrasound tomography directly in the 3D formulation. The proposed algorithms are based on the direct computation of the gradient of the residual functional. The algorithms are primarily oriented toward the development of ultrasound tomographs for differential diagnosis of breast cancer. Computer simulations demonstrated the high efficiency of the developed algorithms. The algorithms are implemented on GPU-based supercomputers. We analyze various schemes of 3D ultrasonic tomographs including those without rotating elements and with fixed positions of the sources and receivers. The algorithms developed can be used for solving inverse problems of seismology, acoustics, and electromagnetic sounding.  相似文献   

11.
Many machine elements in common engineering use exhibit the characteristic of “hysteresis springs”. Plain and rolling element bearings that are widely used in motion guidance of machine tools are typical examples. The study of the non-linear dynamics caused by such elements becomes imperative if we wish to achieve accurate control of such machines.

This paper outlines the properties of rate-independent hysteresis and shows that the calculation of the free response of a single-degree-of-freedom (SDOF) mass-hysteresis-spring system is amenable to an exact solution. The more important issue of forced response is not so, requiring other methods of treatment. We consider the approximate describing function method and compare its results with exact numerical simulations. Agreement is good for small excitation amplitudes, where the system approximates to a linear mass-spring-damper system, and for very large amplitudes, where some sort of mass-line is approached. Intermediate values however, show high sensitivity to amplitude variations, and no regular solution is obtained by either approach. This appears thus to be an inherent property of the system pointing to the need for developing further analysis methods.  相似文献   


12.
Sodium carboxymethylcellulose (NaCMC) in solution represents a complex rheological system, since it forms aggregates and associations and hence higher-level structures and, depending on the synthesis, is only found in a molecularly dispersed form in exceptional cases. Rheo-mechanical investigations of the viscoelasticity showed that the Cox-Merz rule is not fulfilled. The aim was therefore to examine whether rheo-optics could be employed to provide more detailed conclusions about the parameters that influence the flow behavior of NaCMC than has hitherto been available with mechanical methods. The flow birefringence, Δn , rises as the degree of polymerization increases, and exhibits the same dependence on molar mass as does the viscosity: Δn M w 3.4. As the degree of polymerization increases while the shear rate remains constant, the polymer segments become more distinctly aligned in the direction of shear. Hence increasing the degree of polymerization also affects the solution structure, i.e. the interaction of the molecules with one another. The stress-optical rule only applies to a limited extent for this system. The stress-optical coefficient, C, is almost independent of the shear rate, but is strongly influenced by the concentration and attains a limiting value of 3 × 10−8 Pa−1. C was determined for a polymer in dilute solution and the curve obtained also enabled transitions in the solution structure to be recognized. Received: 1 May 1998 Accepted: 5 October 1998  相似文献   

13.
The influence of medium viscosity on the onset of shear thickening of silica dispersions is investigated with two different methods. In the first method, the sample temperature is varied over a narrow range for two different suspensions. For the first suspension, the stress at the onset of shear thickening, or the critical stress, was found to be independent of sample viscosity, and the shear viscosity scaled with Peclet number, as expected. The critical stress for the second suspension was not independent of sample viscosity, and the Peclet number scaling was only moderately successful. The differences were attributed to changes in particle interactions with temperature. In the second method, the molecular weight of an oligomeric silicone oil medium is varied. In principle, this method should maintain constant chemical interactions as medium viscosity varies; however the polymer is found to adsorb onto the silica surface and delay shear thickening to higher stresses with increasing molecular weight. The critical stress for the highest molecular weight systems, which is highly dependent on particle loading, overlays with an effective volume fraction based on the hydrodynamic diameter of the polymer-stabilized colloids. The results of both methods suggest that if all other properties of the dispersion are held constant, critical stress is independent of medium viscosity.  相似文献   

14.
Although, the effects of ultrasonic irradiation on multiphase flow through porous media have been studied in the past few decades, the physics of the acoustic interaction between fluid and rock is not yet well understood. Various mechanisms may be responsible for enhancing the flow of oil through porous media in the presence of an acoustic field. Capillary related mechanisms are peristaltic transport due to mechanical deformation of the pore walls, reduction of capillary forces due to the destruction of surface films generated across pore boundaries, coalescence of oil drops due to Bjerknes forces, oscillation and excitation of capillary trapped oil drops, forces generated by cavitating bubbles, and sonocapillary effects. Insight into the physical principles governing the mobilization of oil by ultrasonic waves is vital for developing and implementing novel techniques of oil extraction. This paper aims at identifying and analyzing the influence of high-frequency, high-intensity ultrasonic radiation on capillary imbibition. Laboratory experiments were performed using cylindrical Berea sandstone and Indiana limestone samples with all sides (quasi-co-current imbibition), and only one side (counter-current imbibition) contacting with the aqueous phase. The oil saturated cores were placed in an ultrasonic bath, and brought into contact with the aqueous phase. The recovery rate due to capillary imbibition was monitored against time. Air–water, mineral oil–brine, mineral oil–surfactant solution and mineral oil-polymer solution experiments were run each exploring a separate physical process governing acoustic stimulation. Water–air imbibition tests isolate the effect of ultrasound on wettability, capillarity and density, while oil–brine imbibition experiments help outline the ultrasonic effect on viscosity and interfacial interaction between oil, rock and aqueous phase. We find that ultrasonic irradiation enhances capillary imbibition recovery of oil for various fluid pairs, and that such process is dependent on the interfacial tension and density of the fluids. Although more evidence is needed, some runs hint that wettability was not altered substantially under ultrasound. Preliminary analysis of the imbibition recoveries also suggests that ultrasound enhances surfactant solubility and reduce surfactant adsorption onto the rock matrix. Additionally, counter-current experiments involving kerosene and brine in epoxy coated Berea sandstone showed a dramatic decline in recovery. Therefore, the effectiveness of any ultrasonic application may strongly depend on the nature of interaction type, i.e., co- or counter-current flow. A modified form of an exponential model was employed to fit the recovery curves in an attempt to quantify the factors causing the incremental recovery by ultrasonic waves for different fluid pairs and rock types.  相似文献   

15.
固-液接触状态广泛存在于机床核心单元关键零部件的接触运动副中,精确获得固-液结合面法向接触刚度及阻尼参数是高档数控机床产品在研发阶段就存在的一个关键理论与技术问题,并且仍然尚未根本解决.固-液结合面在介观层面上表现为两个粗糙表面的接触,在微观层面上表现为微凸体之间的接触,并在中/重载荷作用下微凸体可能会发生弹性/弹塑性...  相似文献   

16.
 Fourier transform mechanical spectroscopy technique (FTMS) is utilized as a powerful tool to study the sol-gel transition of covalent bonded polymeric network. Winter and Chambon criteria resulting from the fractal-geometry characteristic of the gel networks allow the determination of the gel point with only single experiment using this technique. The gelation behaviors of low melt viscosity ternary systems of benzoxazine, epoxy, and phenolic resins are investigated and analyzed by the technique in order to study the effect of epoxy diluent on the rheological property development before and after the gel points. The gel time at 140 °C ranges from 5 min to 30 min and less than 5 min at 180 °C for all tested ternary system compositions. The gelation of the ternary mixture shows an Arrhenius-type behavior and the gel time can be well-predicted by the Arrhenius equation. Received: 23 November 1999 Accepted: 2 January 2001  相似文献   

17.
应用爆炸加载的透射式动焦散线测试系统,分析了有机玻璃切槽孔爆破模型的裂纹动态特征变化规律。比较了不同切槽角度、切槽深度的定向断裂裂纹尖端的扩展长度、扩展速度和动态应力强度因子。初步探讨了切槽爆破的动态效应,研究表明切槽孔爆破早期裂纹破坏模式为爆炸拉应力波作用下的I型快速扩展裂纹,裂纹尖端拉应力集中积聚的较大应变能维持了爆炸裂纹进一步扩展,裂纹尖端扩展后期表现为P波、S波共同作用下的复合型扩展特征。切槽角为60时获得的定向断裂效果最好,合理切槽深度为炮孔半径的1/4~1/2。  相似文献   

18.
The paper proposes an analytic procedure based on the method of characteristics to study the nonstationary thickness vibration of a piezoelectric layer polarized across the thickness and subjected to dynamic mechanical loading. The problem is solved for a suddenly applied harmonic mechanical load. The dynamic electroelastic state of the layer is analyzed Translated from Prikladnaya Mekhanika, Vol. 45, No. 1, pp. 82–89, January 2009.  相似文献   

19.
20.
Vibration energy harvesters(VEHs) can transform ambient vibration energy to electricity and have been widely investigated as promising self-powered devices for wireless sensor networks, wearable sensors, and applications of a micro-electro-mechanical system(MEMS). However, the ambient vibration is always too weak to hinder the high energy conversion efficiency. In this paper, the integrated frame composed of piezoelectric beams and mechanical amplifiers is proposed to improve the energy conversion efficiency of a VEH. First, the initial structures of a piezoelectric frame(PF) and an amplification frame(AF) are designed. The dynamic model is then established to analyze the influence of key structural parameters on the mechanical amplification factor. Finite element simulation is conducted to study the energy harvesting performance, where the stiffness characteristics and power output in the cases of series and parallel load resistance are discussed in detail. Furthermore, piezoelectric beams with variable cross-sections are introduced to optimize and improve the energy harvesting efficiency. Advantages of the PF with the AF are illustrated by comparison with conventional piezoelectric cantilever beams. The results show that the proposed integrated VEH has a good mechanical amplification capability and is more suitable for low-frequency vibration conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号