首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The separation of several insect oostatic peptides (IOPs) was achieved by using CEC with a strong-cation-exchange (SCX) stationary phase in the fused-silica capillary column of 75 microm id. The effect of organic modifier, ionic strength, buffer pH, applied voltage, and temperature on peptides' resolution was evaluated. Baseline separation of the studied IOPs was achieved using a mobile phase containing 100 mM pH 2.3 sodium phosphate buffer/water/ACN (10:20:70 v/v/v). In order to reduce the analysis time, experiments were performed in the short side mode where the stationary phase was packed for 7 cm only. The selection of the experimental parameters strongly influenced the retention time, resolution, and retention factor. An acidic pH was selected in order to positively charge the analyzed peptides, the pI's of which are about 3 in water buffer solutions. A good selectivity and resolution was achieved at pH <2.8; at higher pH the three parameters decreased due to reduced or even zero charge of peptides. The increase in the ionic strength of the buffer present in the mobile phase caused a decrease in retention factor for all the studied compounds due to the decreased interaction between analytes and stationary phase. Raising the ACN concentration in the mobile phase in the range 40-80% v/v caused an increase in both retention factor, retention time, and resolution due to the hydrophilic interactions of IOPs with free silanols and sulfonic groups of the stationary phase.  相似文献   

2.
(S)‐N‐(3,5‐dinitrobenzoyl)leucine‐N‐phenyl‐N‐propylamine‐bonded silica was used as a chiral stationary phase for separation of a set of racemic π‐acidic and π‐basic α‐amino acid amides in electrolyteless ACN‐water eluents by CEC in the RP and polar organic (PO) modes. The effect of the amount of water in the ACN‐water eluent on chiral separation was examined. As water is added to ACN, retention was shortened but resolution and selectivity deteriorated severely. Retention, enantioselectivity, and resolution factors obtained in 100% ACN were compared with those in an n‐hexane‐isopropanol eluent with a small amount of water by normal phase (NP) CEC. Much shorter retention times with comparable enantioselectivities were observed with 100% ACN, demonstrating the advantage of separation on (S)‐N‐(DNB)leucine‐N‐phenyl‐N‐propylamine‐bonded silica in PO‐CEC over NP‐CEC.  相似文献   

3.
In this study, a series of poly(styrene-divinylbenzene-methacrylic acid) monolithic capillaries was used as the separation column of CEC for the analyses of parabens in commercial pharmaceutical and cosmetic products. The results showed that the chromatographic characteristics of these analytes were strongly affected by the preparation condition of the monolithic column including monomer content, porogenic solvent composition, and polymerization time. Baseline separations were markedly sped up by lowering the polymerization time without any obvious loss of resolution. Furthermore, mobile-phase composition (pH, ACN, and electrolyte concentration) was also able to effectively improve the separation behavior. Similar to the influence of lowering the polymerization time, retention times for all analytes were significantly shortened in the CEC method by decreasing the electrolyte concentration in the mobile phase.  相似文献   

4.
This work presents a fast method for the simultaneous separation and determination of glimepiride, glibenclamide, and two related substances by RP LC. The separation was performed on a Chromolith Performance (RP-18e, 100 mm x 4.6 mm) column. As mobile phase, a mixture of phosphate buffer pH 3, 7.4 mM, and ACN (55:45 v/v) was used. Column oven temperature was set to 30 degrees C. The total chromatographic run time was 80 s. This was achieved using a flow program from 5 to 9.9 mL/min. Precisions of the interday and the intraday assay for both retention times and peak areas for the four analyzed compounds were less than 1.2%. The method showed good linearity and recovery. The short analysis time makes the method very valuable for quality control and stability testing of drugs and their pharmaceutical preparations.  相似文献   

5.
Experimental design and response surface methodology have been used for the development of the stability‐indicating HPLC method for the purity determination of yunaconitine reference standard. Significant factors including the contents of ACN, perchloric acid, triethylamine (TEA), and column temperature were optimized using a Box–Behnken design. A mixture of crude yunaconitine extract and degradation solutions of yunaconitine under stress conditions was chromatogramed. The normalized peak area of total impurities, the retention time of yunaconitine, and the resolutions between yunaconitine and its adjacent peaks were selected as optimization criteria. Derringer desirability function of the multicriteria and the tested factors were used to establish 3‐D response surfaces. The optimal condition was achieved with a mobile phase of ACN/water (30:70, containing 0.125% perchloric acid and 1.0% TEA) at a column temperature of 37.5°C. The method was validated and shown comparable to that of phase solubility analysis. As a result, the newly developed method can be used to determine the chromatographic purity and stability of the yunaconitine reference standard.  相似文献   

6.
A statistical approach for the simultaneous optimization of the mobile and stationary phases used in reversed-phase liquid chromatography is presented. Mixture designs using aqueous mixtures of acetonitrile (ACN), methanol (MeOH) and tetrahydrofuran (THF) organic modifiers were performed simultaneously with column type optimization, according to a split-plot design, to achieve the best separation of compounds in two sample sets: one containing 10 neutral compounds with similar retention factors and another containing 11 pesticides. Combined models were obtained by multiplying a linear model for column type, C8 or C18, by quadratic or special cubic mixture models. Instead of using an objective response function, combined models were built for elementary chromatographic criteria (retention factors, resolution and relative retention) of each solute or pair of solutes and, after their validation, the global separation was accomplished by means of Derringer's desirability functions. For neutral compounds a 37:12:8:43 (v/v/v/v) percentage mixture of ACN:MeOH:THF:H2O with the C18 column and for pesticides a 15:15:70 (v/v/v) ACN:THF:H2O mixture with the C8 column provide excellent resolution of all peaks.  相似文献   

7.
Norton D  Rizvi SA  Shamsi SA 《Electrophoresis》2006,27(21):4273-4287
The CEC-MS of alkyltrimethylammonium (ATMA+) ions with chain lengths ranging from C1-C18 is optimized using an internally tapered column packed with mixed mode reversed phase/strong cation exchange stationary phase. A systematic study of the CEC separation parameters is conducted followed by evaluation of the ESI-MS sheath liquid and spray chamber settings. First, the optimization of CEC separation parameters are performed including the ACN concentration, triethylamine (TEA) content, buffer pH and ammonium acetate concentration. Using 90% v/v ACN with 0.04% v/v TEA as mobile phase, the separation of longer chain C6-C18-TMA+ surfactants could be achieved in 15 min. Lowering the ACN concentration to 70% v/v provided resolution of shorter chain C1, C2-TMA+ from C6-TMA+ although the total analysis time increased to 40 min. Furthermore, variation of both the ACN and TEA content as well as ionic strength has found to significantly influence the retention of longer chain surfactants as compared to shorter chains. The optimum CEC conditions are 70% v/v ACN, 0.04% v/v TEA, pH 3.0 and 15 mM ammonium acetate. Next, the optimization of the ESI-MS sheath liquid composition is conducted comparing methanol to isopropanol followed by the use of experimental design for analysis of spray chamber parameters. Overall, the developed CEC-ESI-MS method allows quantitative and sensitive monitoring of ATMA+ from < or =10 microg/mL down to 10 ng/mL. Utilizing the optimized CEC-ESI-MS protocol, the challenging analysis of commercial sample Arquad S-50 ATMA+ containing cis-trans unsaturated and saturated soyabean fatty acid derivatives is demonstrated.  相似文献   

8.
This paper describes the development of a sequential injection chromatography (SIC) procedure for separation and quantification of the herbicides simazine, atrazine, and propazine exploring the low backpressure of a 2.5 cm long monolithic C18 column. The separation of the three compounds was achieved in less than 90 s with resolution >1.5 using a mobile phase composed by ACN/1.25 mmol/L acetate buffer (pH 4.5) at the volumetric ratio of 35:65 and flow rate of 40 μL/s. Detection was made at 223 nm using a flow cell with 40 mm of optical path length. The LOD was 10 μg/L for the three triazines and the quantification limits were of 30 μg/L for simazine and propazine and 40 μg/L for atrazine. The sampling frequency is 27 samples per hour, consuming 1.1 mL of ACN per analysis. The proposed methodology was applied to spiked water samples and no statistically significant differences were observed in comparison to a conventional HPLC–UV method. The major metabolites of atrazine and other herbicides did not interfere in the analysis, being eluted from the column either together with the unretained peak, or at retention times well‐resolved from the studied compounds.  相似文献   

9.
The separation and simultaneous determination of caffeine, paracetamol, and acetylsalicylic acid in two analgesic tablet formulations was investigated by capillary electrochromatography (CEC). The effect of mobile phase composition on the separation and peak efficiency of the three analytes was studied and evaluated; in particular, the influence of buffer type, buffer pH, and acetonitrile content of the mobile phase was investigated. The analyses were carried out under optimized separation conditions, using a full-packed silica capillary (75 microm ID; 30.0 cm and 21.5 cm total and effective lengths, respectively) with a 5 microm C8 stationary phase. A mixture of 25 mM ammonium formate at pH 3.0 and acetonitrile (30:70 v/v) was used as the mobile phase. UV detection was at 210 nm. Good linearity was found in the range of 50-200, 20-160, and 4-20 microg/mL for acetylsalicylic acid (r2=0.9988), paracetamol (r2=0.9990) and caffeine (r2=0.9990), respectively. Intermediate precision (RSD interday) as low as 0.1-0.8% was found for retention times, while the RSD values for the peak area ratios (Aanalyte/AIS) were in the range of 1.9-2.9%. The optimized CEC method was applied to the analysis of the studied compounds present in commercial tablets.  相似文献   

10.
The discrimination ability of three cellulose-based chiral stationary phases (CSPs) was evaluated towards the enantiomers of basic drugs, using ACN as the main solvent in polar organic mobile phases. The study was focused on CSPs containing cellulose tris(3-chloro-4-methylphenylcarbamate) (3-Cl-4-MePC), cellulose tris(4-chloro-3-methylphenylcarbamate) (4-Cl-3-MePC) or cellulose tris(3,5-dichlorophenylcarbamate) (3,5-diClPC) as the chiral selector. The behaviour of these CSPs was studied systematically in order to investigate the influence of the presence and position of the chlorine substituents on the phenylcarbamate moieties on the retention and resolution of the enantiomers. The evaluation was made with three different generic mobile phases, namely ACN/0.1%DEA/0.1% TFA (DEA, diethylamine), ACN/0.1%DEA/0.2% FA and ACN/0.1%DEA/0.2%AcA, deduced from the previous study. The nature of the acidic additive and of the chiral selector was found to be particularly important for the retention and enantioresolution of these basic compounds. High-resolution values could be obtained for most studied enantiomers with these CSPs, clearly demonstrating the interest of using them in combination with polar organic mobile phases. However, significant differences in enantioresolution between the CSPs have been observed for many compounds, indicating that these phases seem to be quite complementary.  相似文献   

11.
Summary A method of reserved-phase HPLC analysis for mixtures of triglycerides (TG's) that provides good resolution at acceptable analysis times for high-ECN TG's has been developed. An elution gradient of methyltert-butyl-ether (MTBE) in acetonitrile (ACN) was used with an ultraviolet detector operated at 215nm. The effect of the proportion of MTBE in the mobile phase, gradient time, temperature and sample solvent on TG retention and resolution was studied. Linear relationships were derived between the logarithm of the capacity factor (log k'), and the logarithm of selectivity (log α) and the above-mentioned chromatographic factors. The conditions selected were: an elution gradient of from 23 to 30% MTBE, an elution gradient time of 25 minutes, and a temperature of 30°C, which provided good resolution of soybean oil TG's in less than 30 minutes.  相似文献   

12.
Gram quantity separations of polar compounds (tryptophyl-leucine and valyl-tyrosine) have successfully been accomplished with the use of a horizontal coil planet centrifuge. Two columns of different length fluorinated ethylene propylene tubing but of same internal diameter (0.55 cm) were coaxially coiled around a holder 7.5 cm or 15 cm in diameter and used to assess the preparative capabilities of the apparatus in terms of stationary phase retention and sample peak resolution. Optimal operating conditions derived from preliminary studies with the short column were applied to a column 7 times in length and volume. Volume capacities were 114 ml and 750 ml respectively. A hydrophilic solvent system of n-butanol, acetic acid and water (4:1:5) was used with both the aqueous and non-aqueous phases being used as the mobile phase. Preliminary studies revealed that the hydrodynamic distribution of the two phases was independent of the helical diameter while peak resolution was sensitive to both helical diameter and rpm setting.  相似文献   

13.
Porous zirconia monolith (ZM) modified with cellulose 3,5-dimethylphenylcarbamate (CDMPC) was used as chiral stationary phase to separate basic chiral compounds in capillary electrochromatography. The electroosmotic flow behavior of bare and CDMPC-modified zirconia monolithic (CDMPC-ZM) column was studied in ACN/phosphate buffer eluents of pH ranging from 2 to 12. The CDMPC-ZM column was evaluated by investigating the influences of pH, the type and composition of organic modifier of the eluent on enantioseparation. CEC separations at pH 9 provided the best resolutions for the analytes studied, which are better than those observed on CDMPC-modified silica monolithic columns under similar chromatographic conditions. No appreciable decline in retention and resolution factors after over 200 injections, and run-to-run and day-to-day repeatabilities of the column of less than 3% indicate the stability of the zirconia monolithic column in basic media.  相似文献   

14.
Belin GK  Erim FB  Gülaçar FO 《Talanta》2006,69(3):596-600
The separation of different ring numbered polyaromatic hydrocarbons (PAHs) was accomplished by using cetyltrimethylammonium bromide (CTAB) in capillary electrokinetic chromatography. In order to increase the solubilities and selectivities of PAHs, acetonitrile (ACN) was used as an organic modifier. Under the optimised conditions, 11 aromatic compounds were separated within 14.5 min in a running electrolyte containing 10 mM phosphate, 30 mM CTAB, and 40% ACN at pH 6.0. The effects of CTAB and ACN concentrations, voltage and pH on the resolution were investigated. Reproducibilities of migration times range between 0.55 and 1.27 R.S.D.% and peak areas between 1.02 and 7.23 R.S.D.%. Limit of detections (LODs) range between 0.09 and 2.24 μg ml−1. This new and fast separation method of PAHs was applied to cooked oil sample.  相似文献   

15.
The use of a C12 stationary phase with embedded polar group has been investigated for the separation of seven tetracyclines. The influence of pH, organic modifier, buffer, and temperature on the peak shape and analyte separation was discussed. It appears that all the chromatographic conditions had a great effect on both the resolution and peak shape whereas the elution order was not affected. The baseline separation with symmetrical peaks of the seven tetracyclines can be obtained with a mobile phase containing either 5 mM phosphate buffer pH 2.5/ACN (84:16 v/v) or 5 mM perchlorate buffer pH 2.5/ACN (75:25 v/v) at a temperature not exceeding 20 degrees C. This study reveals that the retention mechanism is ion-pairing.  相似文献   

16.
Dong X  Wu R  Dong J  Wu M  Zhu Y  Zou H 《Electrophoresis》2008,29(4):919-927
A hydrophilic chiral capillary monolithic column for enantiomer separation in CEC was prepared by coating cellulose tris(3,5-dimethylphenyl-carbamate) (CDMPC) on porous hydrophilic poly(acrylamide-co-N,N'-methylene-bisacrylamide) (poly(AA-co-MBA)) monolithic matrix with confine of a fused-silica capillary. The coating conditions were optimized to obtain a stable and reproducible chiral stationary phase for CEC. The effect of organic modifier of ACN in aqueous mobile phase for the enantiomer separation by CEC was investigated, and the significant influence of ACN on the enantioresolution and electrochromatographic retention was observed. Twelve pairs of enantiomers including acidic, neutral, and basic analytes were tested and nine pairs of them were baseline-enantioresolved with acidic and basic aqueous mobile phases. A good within-column repeatability in retention time (RSD = 2.4%) and resolution (RSD = 3.2%) was obtained by consecutive injections of a neutral compound, benzoin, on a prepared chiral monolithic column, while the between-column repeatability in retention time (RSD = 6.4%) and resolution (RSD = 9.6%) was observed by column-to-column examination. The prepared monolithic stationary phase showed good stability in either acidic or basic mobile phase.  相似文献   

17.
A LC isocratic separation study of a complex mixture containing 18 steroids (corticoids and anabolics), used potentially as growth promoters, was carried out. For this purpose, using a Hypersil ODS column at controlled temperature, mobile phases (from binary to quaternary) prepared from water and MeOH, ACN or THF as organic modifiers and UV detection at 245 nm, were employed (dehydroepiandrosterone was detected at 200 nm). The optimum separation was achieved using water/acetonitrile (65:35, v/v) as mobile phase at 30 degrees C, allowing the separation of 16 out of 18 steroids in about 30 min. The retention scale using optimized binary mobile phases was related with steroids hydrophobicity and structure, allowing a classification into three groups for these compounds. To improve the separation several alkyl-silica packings were tested: Type A (Lichrospher C8) and Type B (Luna C18, Kromasil C18, Purospher C18 and Synergy C12). Taking into account resolution, number of separated compounds and run time analysis the Hypersil column was selected as the best choice for further applications. Calibration graphs were obtained using fluorocortisone, fluoxymesterone or methylprednisolone as internal standard. The optimized separation was applied to the analysis of piglet feed samples spiked with steroids. The sample preparation process included solvent extraction using diethyleter and solid phase extraction using silica cartridges. The recoveries were in the range 70-92%. Decision limits and detection capability were in the range 34-198 and 41-249 microg/kg, respectively. Repeatability was also evaluated.  相似文献   

18.
A rapid and sensitive CEC method with methacrylate ester‐based monolithic column has been developed for separation and determination of five coumarins (byakangelicin, oxypeucedanin hydrate, xanthotoxol, 5‐hydroxy‐8‐methoxypsoralen and bergapten) in Angelica dahurica extract. Surfactant sodium desoxycholate (SDC) was introduced into the mobile phase as the pseudostationary to dynamically increase the selectivity of analytes instead of increasing the hydrophobicity of stationary phase. In addition, other factors, pH of phosphate buffer, ACN content and applied voltage, for instance, have also an obvious effect on the resolution but little on the retention time. Satisfactory separation of these five coumarins was achieved within 6 min under a 30:70 v/v ACN–buffer containing 20 mM sodium dihydrogen phosphate (NaH2PO4) and 0.25 mM SDC at pH 2.51. The RSDs of intraday and interday for relative peak areas were less than 3.0% and 4.7%, respectively; and the recoveries were between 87.5% and 95.0%. The LODs were lower than 0.15 μg/mL and the LOQs were lower than 0.30 μg/mL, respectively, while calibration curves showed a good linearity (r2 > 0.9979). Finally, five target coumarins from the crude extracts of A. dahurica were separated, purified, and concentrated by D‐101 macroporous resin, and were successfully separated and quantitatively determined within 6 min.  相似文献   

19.
A hydrophilic monolithic CEC column was prepared by thermal copolymerization of zwitterionic monomer 2‐methacryloyloxyethyl phosphorylcholine (MPC), pentaerythritol triacrylate (PETA), either methacrylatoethyl trimethyl ammonium chloride (META) or sodium 2‐methylpropene‐1‐sulfonate (MPS) in a polar binary porogen consisting of methanol and THF. A typical hydrophilic interaction LC retention mechanism was observed for low‐molecular weight polar compounds including amides, nucleotides, and nucleosides in the separation mode of hydrophilic interaction CEC, when high content of ACN (>60%) was used as the mobile phase. The effect of the electrostatic interaction between the analytes and the stationary phase was found to be negligible. The poly(MPC‐co‐PETA‐co‐META or MPS) monolithic columns have an average column efficiency of 40 000 plates/m and displayed with a satisfactory repeatability in terms of migration time and peak areas. Finally, the column was successfully applied to determine the impurities of a positively charged drug pramipexole which are often separated by ion pair RP chromatography due to their high hydrophilicity. All four components can be baseline separated within 5 min with BGE consisting of ACN/20 mM ammonium formate buffer (pH 3.0; 80/20).  相似文献   

20.
Capillary electrochromatography (CEC) was employed for the assay of ketorolac (KT) and its known related impurities [1-hydroxy analog of ketorolac (HK), 1-keto analog of ketorolac (KK), ketorolac decarboxylated (DK)] in both drug substance and coated tablets. Detection was made at 323 nm and flufenamic acid was selected as internal standard. The experiments were performed in a 100 microm i.d. capillary packed with RP-18 silica particles (33.0, 24.5, 23.0 cm total, effective and packed lengths, respectively). The composition of the mobile phase was optimised by changing pH of the buffer and acetonitrile (ACN) content and by addition of other organic modifiers (methanol, ethanol, isopropanol, n-propanol) in order to evaluate the effect of these factors on the method performance (efficiency, retention and resolution). The optimum mobile phase consisted of a mixture of 50 mM ammonium formate buffer pH 3.5-water-acetonitrile (10:20:70, v/v/v), while voltage and temperature were set at 30 kV and 20 degrees C, respectively. Applying these conditions, all peaks were baseline resolved and the analysis was performed in less than 9 min. Selectivity, repeatability of retention time and peak area, detection and quantitation limits, linearity and range, precision and accuracy were also investigated. R.S.D. and bias values obtained for all the analytes were below 5% and sensitivity was satisfactory, thus the method was deemed suitable for pharmaceutical quality control. Applying the method to coated tablets, a recovery of 98.5+/-0.8% and an R.S.D. of 0.5% were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号