首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following the excitation of high OH stretch overtones is studied by quasi-classical molecular dynamics calculations using a global potential energy surface (PES) fitted to ab initio calculations. The PES includes CH(2)OH and CH(3)O minima, dissociation products, and all relevant barriers. Its analysis shows that the transition states for OH bond fission and isomerization are both very close in energy to the excited vibrational levels reached in recent experiments and involve significant geometry changes relative to the CH(2)OH equilibrium structure. The energies of key stationary points are refined using high-level electronic structure calculations. Vibrational energies and wavefunctions are computed by coupled anharmonic vibrational calculations. They show that high OH-stretch overtones are mixed with other modes. Consequently, trajectory calculations carried out at energies about ~3000 cm(-1) above the barriers reveal that despite initial excitation of the OH stretch, the direct OH bond fission is relatively slow (10 ps) and a considerable fraction of the radicals undergoes isomerization to the methoxy radical. The computed dissociation energies are: D(0)(CH(2)OH → CH(2)O + H) = 10,188 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,167 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,787 cm(-1). All are in excellent agreement with the experimental results. For CH(2)OH, the barriers for the direct OH bond fission and isomerization are: 14,205 and 13,839 cm(-1), respectively.  相似文献   

2.
The photolysis of nitrophenols was proposed as a source of reactive radicals and NOx compounds in polluted air. The S0 singlet ground state and T1 first excited triplet state of nitrophenol were investigated to assess the energy dependence of the photofragmentation product distribution as a function of the reaction conditions, based on quantum chemical calculations at the G3SX//M06–2X/aug‐cc‐pVTZ level of theory combined with RRKM master equation calculations. On both potential energy surfaces, we find rapid isomerization with the aci‐nitrophenol isomer, as well as pathways forming NO, NO2, OH, HONO, and H‐, and O‐atoms, extending earlier studies on the T1 state and in agreement with available work on other nitroaromatics. We find that accessing the lowest photofragmentation channel from the S0 ground state requires only 268 kJ/mol of activation energy, but at a pressure of 1 atm collisional energy loss dominates such that significant fragmentation only occurs at internal energies exceeding 550 kJ/mol, making this surface unimportant for atmospheric photolysis. Intersystem crossing to the T1 triplet state leads more readily to fragmentation, with dissociation occurring at energies of ~450 kJ/mol above the singlet ground state even at 1 atm. The main product is found to be OH + nitrosophenoxy, followed by formation of hydroxyphenoxy + NO and phenyloxyl + HONO. The predictions are compared against available experimental data.  相似文献   

3.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following excitation in the 4ν(1) region (OH stretch overtone, near 13,600 cm(-1)) was studied using sliced velocity map imaging. A new vibrational band near 13,660 cm(-1) arising from interaction with the antisymmetric CH stretch was discovered for CH(2)OH. In CD(2)OH dissociation, D atom products (correlated with CHDO) were detected, providing the first experimental evidence of isomerization in the CH(2)OH ? CH(3)O (CD(2)OH ? CHD(2)O) system. Analysis of the H (D) fragment kinetic energy distributions shows that the rovibrational state distributions in the formaldehyde cofragments are different for the OH bond fission and isomerization pathways. Isomerization is responsible for 10%-30% of dissociation events in all studied cases, and its contribution depends on the excited vibrational level of the radical. Accurate dissociation energies were determined: D(0)(CH(2)OH → CH(2)O + H) = 10,160 ± 70 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,135 ± 70 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,760 ± 60 cm(-1).  相似文献   

4.
We report a combined experimental and computational study of the proline effect in model dipeptides Pro-Gly and Gly-Pro. Gas-phase protonated peptide ions were discharged by glancing collisions with potassium or cesium atoms at 3 keV collision energies, and the peptide radical intermediates and their dissociation products were analyzed following collisional ionization to anions. The charge reversal (+CR-) mass spectra of (Pro-Gly + H)+(1a+) and (Gly-Pro + H)+ (2a+) showed dramatic differences and thus provided a sensitive probe of ion structure. Whereas 1a+ completely dissociated upon charge inversion, 2a+ gave a nondissociated anion as the most abundant product. Ab initio and density functional theory calculations provided structures and vertical recombination energies (REvert) for 1a+ and 2a+. The recombination energies, REvert = 3.07 and 3.36 eV for 1a+ and 2a+, respectively, were lower than the alkali metal ionization energies and indicated that the collisional electron transfer to the peptide ions was endoergic. Radical 1a* was found to exist in a very shallow local energy minimum, with transition state energies for loss and migration of H indicating very facile dissociation. In contrast, radical 2a* was calculated to spontaneously isomerize upon electron capture to a stable dihydroxycarbinyl isomer (2e*) that can undergo consecutive and competitive isomerizations by proline ring opening and intramolecular hydrogen atom transfers to yield stable radical isomers. Radical 2e* and its stable isomers were calculated to have substantial electron affinities and thus can form the stable anions that were observed in the +CR- mass spectra. The calculated TS energies and RRKM kinetic analysis indicated that peptide N-C alpha bond dissociations compete with pyrrolidine ring openings triggered by radical sites at both the N-terminal and C-terminal sides of the proline residue. Open-ring intermediates were found in which loss of an H atom was energetically preferred over backbone dissociations. This provided an explanation for the proline effect causing low incidence of electron capture dissociations of N-C alpha bonds adjacent to proline residues in tryptic peptides and also for some peculiar behavior of proline-containing protein cation-radicals.  相似文献   

5.
Quantum-mechanical calculations have been performed on various isomers of the (CuNO)+ system. A 2Π ground state is found for the linear CuNO+ and CuON+ isomers and a 2A′ state for the bent CuNO+ and CuON+ isomers. Energy calculations indicate that the linear CuNO+ structure is the most stable, the bent CuNO+ and CuON+ and the linear CuON+ structures are at 0.86 eV, 0.99 eV and 1.04 eV above this respectively. In the CuNO+ → CuON+ interconversion between the linear isomers, three transition states are involved, whereas the bent CuNO+ isomer is found to be an intermediate species. The isomerization barriers, dissociation energies, equilibrium geometries and vibration frequencies are given for all isomers in their ground and first excited states.  相似文献   

6.
We investigated the dynamics of isomerization and multi-channel dissociation of propenal (CH(2)CHCHO), methyl ketene (CH(3)CHCO), hydroxyl propadiene (CH(2)CH(2)CHOH), and hydroxyl cyclopropene (cyclic-C(3)H(3)-OH) in the ground potential-energy surface using quantum-chemical calculations. Optimized structures and vibrational frequencies of molecular species were computed with method B3LYP∕6-311G(d,p). Total energies of molecules at optimized structures were computed at the CCSD(T)∕6-311+G(3df,2p) level of theory. We established the potential-energy surface for decomposition to CH(2)CHCO + H, CH(2)CH + HCO, CH(2)CH(2)∕CH(3)CH + CO, CHCH∕CH(2)C + H(2)CO, CHCCHO∕CH(2)CCO + H(2), CHCH + CO + H(2), CH(3) + HCCO, CH(2)CCH + OH, and CH(2)CC∕cyclic-C(3)H(2) + H(2)O. Microcanonical rate coefficients of various reactions of trans-propenal with internal energies 148 and 182 kcal mol(-1) were calculated using Rice-Ramsperger-Kassel-Marcus and Variational transition state theories. Product branching ratios were derivable using numerical integration of kinetic master equations and the steady-state approximation. The concerted three-body dissociation of trans-propenal to fragments C(2)H(2) + CO + H(2) is the prevailing channel in present calculations. In contrast, C(3)H(3)O + H, C(2)H(3) + HCO and C(2)H(4) + CO were identified as major channels in the photolysis of trans-propenal. The discrepancy between calculations and experiments in product branching ratios indicates that the three major photodissociation channels occur mainly on an excited potential-energy surface whereas the other channels occur mainly on the ground potential-energy surface. This work provides profound insight in the mechanisms of isomerization and multichannel dissociation of the system C(3)H(4)O.  相似文献   

7.
Ammonium radicals derived from protonated beta-alanine N-methyl amide (BANMA) were generated by femtosecond collisional electron transfer to gas-phase cations prepared by chemical ionization and electrospray. Regardless of the mode of precursor ion preparation, the radicals underwent complete dissociation on the time scale of 5.15 micros. Deuterium isotope labeling and product analysis pointed out several competitive and convergent dissociation pathways that were not completely resolved by experiment. Ab initio calculations, which were extrapolated up to the CCSD(T)/6-311++G(3df,2p) level of theory, provided the proton affinity and gas-phase basicity of BANMA as PA = 971 kJ mol-1 and GB = 932 kJ mol-1 to form the most stable ion structure 1c+ in which the protonated ammonium group was internally solvated by hydrogen bonding to the amide carbonyl. Ion 1c+ was calculated to have an adiabatic recombination energy of 3.33 eV to form ammonium radical 1c*. The potential energy surface for competitive and consecutive isomerizations and dissociations of 1c* was investigated at correlated levels of theory and used for Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. RRKM unimolecular rate constants suggested that dissociations starting from the ground electronic state of radical 1c* were dominated by loss of an ammonium hydrogen atom. In contrast, dissociations starting from the B excited state were predicted to proceed by reversible isomerization to an aminoketyl radical (1f*). The latter can in part dissociate by N-Calpha bond cleavage leading to the loss of the amide methyl group. This indicates that apparently competitive dissociations observed for larger amide and peptide radicals, such as backbone cleavages and losses of side-chain groups, may originate from different electronic states and proceed on different potential energy surfaces.  相似文献   

8.
We use density functional theory to investigate the surface chemistry of initial oxidation and hydroxylation of the Ge(100)-2 x 1 surface by water and hydrogen peroxide. Comparison of the reaction of water on the Si(100)-2 x 1 and Ge(100)-2 x 1 surfaces shows that the kinetics of oxidation of the Ge(100)-2 x 1 surface with water is slower. Our calculations also show that oxidation products on the Ge(100)-2 x 1 surface are less thermodynamically stable than on Si. We also investigate two competing dissociation reactions of H2O2 on the Ge(100)-2 x 1 surface. We find that dissociative adsorption via cleavage of the OH bond is less exothermic than OO dissociation. Furthermore, interdimer OO dissociation has a lower activation barrier than interdimer or intradimer OH dissociation, although interdimer dissociation products are found to be less stable compared than those formed from intradimer dissociation reactions. Finally, we find that the oxidation products formed from hydrogen peroxide are more stable than those formed from water.  相似文献   

9.
The cis<-->trans isomerization reaction has been carried out for 2-naphthol and its hydrogen (H) bonded clusters by infrared (IR) laser in the electronic excited state (S1) in supersonic jets. A specific isomer in the jet was pumped to the X-H stretching vibration in the S1 state, where X refers to C, O, or N atom, by using a stepwise UV-IR excitation, and the dispersed emission spectra of the excited species or generated fragments were observed. It was found that the isomerization occurs only in the H-bonded clusters but a bare molecule does not exhibit the isomerization in the examined energy region of Ev< or =3610 cm(-1), indicating a reduction of the isomerization barrier height upon the H bonding. The relative yield of the isomerization was observed as a function of internal energy. The isomerization yield was found to be very high at the low IR frequency excitation, and was rapidly reduced with the IR frequency due to the competition of the dissociation of the H bond within the isomer. Density-functional theory (DFT) and time-dependent DFT calculations were performed for estimating the barrier height of the isomerization for bare 2-naphthol and its cluster for electronic ground and excited states. The calculation showed that the isomerization barrier height is highly dependent on the electronic states. However, the reduction of the height upon the hydrogen bonding was not suggested at the level of our calculation.  相似文献   

10.
Electronic mechanism of the reversible O(2) binding by heme was studied by using Density Functional Theory calculations. The ground state of oxyheme was calculated to be open singlet state [Fe(S =1/2) + O(2)(S = 1/2)]. The potential energy surface for singlet state is associative, while that for triplet state is dissociative. Because the ground state of the O(2)+ deoxyheme system is triplet in the dissociation limit [Fe(S = 2) + O(2)(S = 1)], the O(2) binding process requires relativistic spin-orbit interaction to accomplish the intersystem crossing from triplet to singlet states. Owing to the singlet-triplet crossing, the activation energies for both O(2) binding and dissociation become moderate, and hence reversible. We also found that the deviation of the Fe atom from the porphyrin plane is also important reaction coordinate for O(2) binding. The potential surface is associative/dissociative when the Fe atom locates in-plane/out-of-plane.  相似文献   

11.
These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH2CCH2OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193 nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl+CH2CCH2OH photofragments, a spin-orbit branching ratio for Cl(2P1/2):Cl(2P3/2) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH2CCH2OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH2CCH2OH radical intermediate to the three most important product channels for the OH+allene reaction expected from this radical intermediate: formaldehyde+C2H3, H+acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH3 product channel. We compare our results to a previous theoretical study of the O+allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates.  相似文献   

12.
Density functional theory calculations have been performed for the water exchange mechanism of aquated Al(III). The effect of pH was considered by studying the exchange processes for [Al(H2O)6]3+ and its conjugated base, [Al(H2O)5OH]2+. Both complexes were found to exchange water in a dissociative way with activation energies (EA) of 15.9 and 10.2 kcal/mol, respectively. The influence of solvent molecules on the gas-phase cluster model was considered by the addition of up to four water molecules to the model system. The stabilizing effect of the solvent on the transition state decreases EA to 8.6 (hexa-aqua complex) and 7.6 (monohydroxo complex) kcal/mol, whereas EA for all hydroxo species is consistently significantly lower than those for the related aqua systems, which indicates a much faster water exchange rate. For the hydroxo complex, all calculated five-coordinate intermediates, nH2O.[Al(H2O)4(OH)]2+ (n = 1, 2, 3, 4, 5), are more stable than the corresponding six-coordinate reactants. Our results therefore suggest the presence of a stable five-coordinate species of aquated Al(III), namely, the [Al(H2O)4(OH)]2+ complex.  相似文献   

13.
The CH3 + OH bimolecular reaction and the dissociation of methanol are studied theoretically at conditions relevant to combustion chemistry. Kinetics for the CH3 + OH barrierless association reaction and for the H + CH2OH and H + CH3O product channels are determined in the high-pressure limit using variable reaction coordinate transition state theory and multireference electronic structure calculations to evaluate the fragment interaction energies. The CH3 + OH --> 3CH2 + H2O abstraction reaction and the H2 + HCOH and H2 + H2CO product channels feature localized dynamical bottlenecks and are treated using variational transition state theory and QCISD(T) energies extrapolated to the complete basis set limit. The 1CH2 + H2O product channel has two dynamical regimes, featuring both an inner saddle point and an outer barrierless region, and it is shown that a microcanonical two-state model is necessary to properly describe the association rate for this reaction over a broad temperature range. Experimental channel energies for the methanol system are reevaluated using the Active Thermochemical Tables (ATcT) approach. Pressure dependent, phenomenological rate coefficients for the CH3 + OH bimolecular reaction and for methanol decomposition are determined via master equation simulations. The predicted results agree well with experimental results, including those from a companion high-temperature shock tube determination for the decomposition of methanol.  相似文献   

14.
Configuration interaction calculations of the ground and excited states of the H2CO molecule adsorbed on the Ag(111) surface have been carried out to study the photoinduced dissociation process leading to polymerization of formaldehyde. The metal-adsorbate system has been described by the embedded cluster and multireference configuration interaction methods. The pi electron-attachment H2CO- and n-pi* internally excited H2CO* states have been considered as possible intermediates. The calculations have shown that H2CO* is only very weakly bound on Ag(111), and thus that the dissociation of adsorbed formaldehyde due to internal excitation is unlikely. By contrast, the H2CO- anion is strongly bound to Ag(111) and gains additional vibrational energy along the C-O stretch coordinate via Franck-Condon excitation from the neutral molecule. Computed energy variations of adsorbed H2CO and H2CO- at different key geometries along the pathway for C-O bond cleavage make evident, however, that complete dissociation is very difficult to attain on the potential energy surface of either of these states. Instead, reneutralization of the vibrationally excited anion by electron transfer back to the substrate is the most promising means of breaking the C-O bond, with subsequent formation of the coadsorbed O and CH2 fragments. Furthermore, it has been demonstrated that the most stable state for both dissociation fragments on Ag(111) is a closed-shell singlet, with binding energies relative to the gas-phase products of approximately 3.2 and approximately 1.3 eV for O and CH2, respectively. Further details of the reaction mechanism for the photoinduced C-O bond cleavage of H2CO on the Ag(111) surface are also given.  相似文献   

15.
The absolute total dissociation cross section for ethane is reported for electron energies between 10 and 600 eV. A maximum value of 7.6 × 10?16 cm2 occurs at 80 eV while the apparent threshold is ≈ 10 eV. Dissociative ionization is more probable than dissociation into neutral fragments at all energies except in the threshold region. The data indicates that fragmentation involving methane elimination (c? + C2 H6 → e? + CH4 + CH2) occurs in less than 2% of the dissociative events for 50 < E < 600 eV. Arguments are presented which suggest that some of the lower excited states of ethane are stable against dissociation.  相似文献   

16.
The temporary anion states of gas-phase diphenyl disulfide are characterized by means of electron transmission (ET) and dissociative electron attachment (DEA) spectroscopies. The measured energies of vertical electron attachment are compared to the virtual orbital energies of the neutral state molecule supplied by MP2 and B3LYP calculations with the 6-31G basis set. The calculated energies, scaled with empirical equations, reproduce satisfactorily the attachment energies measured in the ET spectrum. The first anion state of diphenyl disulfide is stable, thus escaping detection in ETS. The vertical and adiabatic electron affinities, evaluated with B3LYP/6-31+G calculations as the energy difference between the neutral and anion states, are predicted to be 0.37 and 1.38 eV, respectively. The anion current displayed in the DEA spectrum has a sharp and intense peak at zero energy, essentially due to the C6H5S- negative fragment. In agreement, according to the calculations, the localization properties of the first anion state are strongly S-S antibonding, and the energetic requirement for its dissociation along the S-S bond is fulfilled even at zero energy.  相似文献   

17.
The H-bonded network rearrangements in the S(0), S(1) and D(0) states of the neutral and cationic p-CreOH(H(2)O)(NH(3)) complexes were studied experimentally by means of (1 + 1)/(1 + 1') REMPI (Resonantly Enhanced MultiPhoton Ionization) and time resolved LIF (Laser Induced Fluorescence) spectroscopies combined with DFT (Density Functional Theory) calculations at the B3LYP/6-311G++(d,p) level. A comparison of the rearrangement process of the H-bonded network in the three states is given. Two cyclic H-bonded isomers were found on the S(0) potential energy surface and the results indicate that the rearrangement in this state is unlikely at the temperature of the supersonic expansion due to the presence of a high-energy barrier (7503 cm(-1)). On the other hand, the re-determination of the S(1) excited state lifetimes confirms that neither the H-bonded rearrangement nor the excited state hydrogen transfer (ESHT) reaction takes place in the S(1) state at the excitation energies of this work. Thus, it is concluded that the absorption of the second photon to reach the D(0) state takes place from the S(1) state of the cyclic-(OH-OH(2)-NH(3)) isomer. A preferential evaporation of H(2)O upon vertical ionization of the cyclic-(OH-OH(2)-NH(3)) isomer is observed which is consistent with a statistical redistribution of the internal energy. Nevertheless, our theoretical calculations suggest that initial excitation of the H-bonded network rearrangement modes may also play a role to leave the H(2)O molecule as a terminal moiety in a chain-(OH-NH(3)-OH(2))(+) isomer. The reaction pathway for the solvent rearrangement involves a double proton transfer process with a very low energy barrier (575 cm(-1)) that is overcome at the vertical ionization energy of the complex.  相似文献   

18.
Products of reactions between the book and kite isomers of Al3O3- and three important molecules are studied with electronic structure calculations. Dissociative adsorption of H2O or CH3OH is highly exothermic and proton-transfer barriers between anion-molecule complexes and the products of these reactions are low. For NH3, the reaction energies are less exothermic and the corresponding barriers are higher. Depending on experimental conditions, Al3O3- (NH3) coordination complexes or products of dissociative adsorption may be prepared. Vertical electron detachment energies of stable anions are predicted with ab initio electron propagator calculations and are in close agreement with experiments on Al3O3- and its products with H2O and CH3OH. Changes in the localization properties of two Al-centered Dyson orbitals account for the differences between the photoelectron spectra of Al3O3- and those of the product anions.  相似文献   

19.
20.
The photodissociation dynamics of the ethoxy radical (CH3CH2O) have been studied at energies from 5.17 to 5.96 eV using photofragment coincidence imaging. The upper state of the electronic transition excited at these energies is assigned to the C2A'state on the basis of electronic structure calculations. Fragment mass distributions show two photodissociation channels, OH + C2H4 and CH3 + CH2O. The presence of an additional photodissociation channel, identified as D + C2D4O, is revealed in time-of-flight distributions from the photodissociation of CD3CD2O. The product branching ratios and fragment translational energy distributions for all of the observed mass channels are nonstatistical. Moreover, the significant yield of OH + C2H4 product suggests that the mechanism for this channel involves isomerization on the excited-state surface. Photodissociation at a much lower yield is seen following excitation at 3.91 eV, corresponding to a vibronic band of the B2A' <-- X2A' transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号