首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore tertiary contact formation in alpha-synuclein, a natively unfolded protein implicated in Parkinson's disease, we have measured the rates of reaction between a powerful electron donor, the tryptophan (W) triplet excited state, and an acceptor, 3-nitro-tyrosine (Y(NO2)) in six different variants, probing loop sizes between 15 and 132 residues. Electron transfer rates decrease with loop size with the fastest contact time of 140 ns for the N-terminal pair and the slowest of 1.2 mus for the N- to C-terminal pair. Diffusion coefficients ranging from approximately 2 x 10-6 to approximately 10-5 cm2 s-1 were extracted from simultaneous fits of the W to Y(NO2) electron (triplet excited state) and energy transfer (singlet excited state) kinetics.  相似文献   

2.
Glycine and proline residues are frequently found in turn and loop structures of proteins and are believed to play an important role during chain compaction early in folding. We investigated their effect on the dynamics of intrachain loop formation in various unstructured polypeptide chains. Loop formation is significantly slower around trans prolyl peptide bonds and faster around glycine residues compared to any other amino acid. However, short loops are formed fastest around cis prolyl bonds with a time constant of 6 ns for end-to-end contact formation in a four-residue loop. Formation of short loops encounters activation energies in the range of 15 to 30 kJ/mol. The altered dynamics around glycine and trans prolyl bonds can be mainly ascribed to their effects on the activation energy. The fast dynamics around cis prolyl bonds, in contrast, originate in a higher Arrhenius pre-exponential factor, which compensates for an increased activation energy for loop formation compared to trans isomers. All-atom simulations of proline-containing peptides indicate that the conformational space for cis prolyl isomers is largely restricted compared to trans isomers. This leads to decreased average end-to-end distances and to a smaller loss in conformational entropy upon loop formation in cis isomers. The results further show that glycine and proline residues only influence formation of short loops containing between 2 and 10 residues, which is the typical loop size in native proteins. Formation of larger loops is not affected by the presence of a single glycine or proline residue.  相似文献   

3.
The conformational search for favorable intramolecular interactions during protein folding is limited by intrachain diffusion processes. Recent studies on the dynamics of loop formation in unfolded polypeptide chains have focused on loops involving residues near the chain ends. During protein folding, however, most contacts are formed between residues in the interior of the chain. We compared the kinetics of end-to-end loop formation (type I loops) to the formation of end-to-interior (type II loops) and interior-to-interior loops (type III loops) using triplet-triplet energy transfer from xanthone to naphthylalanine. The results show that formation of type II and type III loops is slower compared to type I loops of the same size and amino acid sequence. The rate constant for type II loop formation decreases with increasing overall chain dimensions up to a limiting value, at which loop formation is about 2.5-fold slower for type II loops compared to type I loops. Comparing type II loops of different loop size and amino acid sequence shows that the ratio of loop dimension over total chain dimension determines the rate constant for loop formation. Formation of type III loops is 1.7-fold slower than formation of type II loops, indicating that local chain motions are strongly coupled to motions of other chain segments which leads to faster dynamics toward the chain ends. Our results show that differences in the kinetics of formation of type I, type II, and type III loops are mainly caused by differences in internal flexibility at the different positions in the polypeptide chain. Interactions of the polypeptide chain with the solvent contribute to the kinetics of loop formation, which are strongly viscosity-dependent. However, the observed differences in the kinetics of formation of type I, type II, and type III loops are not due to the increased number of peptide-solvent interactions in type II and type III loops compared to type I loops as indicated by identical viscosity dependencies for the kinetics of formation of the different types of loops.  相似文献   

4.
The closure of a three-residue loop was studied using a developed kinematic method. It was shown that there are infinite number of three-residue loops (a locus of conformations), which can connect two segments of a polypeptide. This adds to the current understanding of a finite number of conformations for three-residue loop-closure. In the developed method, some of the equations can be solved analytically to reduce the computation cost. Benefiting from the reduced computation time, we determined all the relative positions of two polypeptide segments that can be connected by a three-residue loop.  相似文献   

5.
Both the oxygen diffusion rate and the oxygen solubility vary with depth into the interior of biological membranes. The product of these two gradients generates a single gradient, a permeability gradient, which is a smooth continuous function of the distance from the center of the membrane. Using electron paramagnetic resonance and the spin-probe method, the relaxation gradient of oxygen, which is directly proportional to the permeability gradient, is the quantity that can be directly measured in membranes under physiological conditions. The gradient obtained provides a calibrated ruler for determining the membrane depth of residues either from loop regions of membrane-binding proteins or from the membrane-exposed residues of transmembrane proteins. We have determined the relaxation gradient of oxygen in zwitterionic and anionic phospholipid membranes by attaching a single nitroxide probe to a transmembrane alpha-helical polypeptide at specific residues. The peptide ruler was used to determine the depth of penetration of the calcium-binding loops of the C2 domain of cytosolic phospholipase A(2). The positions of selected residues of this membrane-binding protein that penetrate into the membrane, determined using this ruler, compared favorably with previous determinations using more complex methods. The relaxation gradient constrains the possible values of the membrane-dependent oxygen concentration and the oxygen diffusion gradients. The average oxygen diffusion coefficient is estimated to be at least 2-fold smaller in the membrane than that in water.  相似文献   

6.
Herein is described the identification of RNA internal loops that bind to derivatives of neomycin B, neamine, tobramycin, and kanamycin A. RNA loop-ligand partners were identified by a two-dimensional combinatorial screening (2DCS) platform that probes RNA and chemical spaces simultaneously. In 2DCS, an aminoglycoside library immobilized onto an agarose microarray was probed for binding to a 3 x 3 nucleotide RNA internal loop library (81,920 interactions probed in duplicate in a single experiment). RNAs that bound aminoglycosides were harvested from the array via gel excision. RNA internal loop preferences for three aminoglycosides were identified from statistical analysis of selected structures. This provides consensus RNA internal loops that bind these structures and include: loops with potential GA pairs for the neomycin derivative, loops with potential GG pairs for the tobramycin derivative, and pyrimidine-rich loops for the kanamycin A derivative. Results with the neamine derivative show that it binds a variety of loops, including loops that contain potential GA pairs that also recognize the neomycin B derivative. All studied selected internal loops are specific for the aminoglycoside that they were selected to bind. Specificity was quantified for 16 selected internal loops by studying their binding to each of the arrayed aminoglycosides. Specificities ranged from 2- to 80-fold with an average specificity of 20-fold. These studies show that 2DCS is a unique platform to probe RNA and chemical space simultaneously to identify specific RNA motif-ligand interactions.  相似文献   

7.
A systematic in silico approach is employed to generate an accurate model for the catalytically important oxidized state of galactose oxidase (GO) using spectroscopically calibrated hybrid density-functional theory. GO displays three distinct oxidation states: oxidized [Cu(II)-Y*], semireduced [Cu(II)-Y], and fully reduced [Cu(I)-Y], but only the [Cu(II)-Y*] and the [Cu(I)-Y] states are assumed to be involved in catalysis. We have developed multiple models for the oxidized [Cu(II)-Y*] state, whose structure has not yet been fully characterized. These models were evaluated by comparison of calculated and experimental structural data, singlet-triplet energy gaps, and electronic transitions for the antiferromagnetically coupled oxidized [Cu(II)-Y*] state. An extended model system that includes explicit solvent molecules and second coordination sphere residues (R330, Y405, and W290) is essential to obtain the correct electronic structure of the active site. The model with all the residues that have been shown to affect the radical stability and catalysis resulted in a singlet ground state with the radical centered on the Y272-C228 cofactor. The optimized structure of the oxidized GO [Cu(II)-Y*] reveals a five-coordinated square pyramidal coordination geometry very similar to [Cu(II)-Y] with considerably different Cu-ligand distances. The hydrogen-bonding interactions involving Y495 modulates the spin density distribution and the singlet-triplet energy gaps. The final model as the most reasonable structure of the oxidized [Cu(II)-Y*] state in GO reproduces the spectroscopic signature of oxidized GO.  相似文献   

8.
Nonoverlapping closed loops of around 25–35 amino acids formed via nonlocal interactions at the loop ends have been proposed as an important unit of protein structure. This hypothesis is significant as such short loops can fold quickly and so would not be bound by the Leventhal paradox, giving insight into the possible nature of the funnel in protein folding. Previously, these closed loops have been identified either by sequence analysis (conservation and autocorrelation) or studies of the geometry of individual proteins. Given the potential significance of the closed loop hypothesis, we have explored a new strategy for determining closed loops from the insertions identified by the structural alignment of proteins sharing the same overall fold. We determined the locations of the closed loops in 37 pairs of proteins and obtained excellent agreement with previously published closed loops. The relevance of NMR structures to closed loop determination is briefly discussed. For cytochrome c, cytochrome b562 and triosephophate isomerase, independent folding units have been determined on the basis of hydrogen exchange experiments and misincorporation proton‐alkyl exchange experiments. The correspondence between these experimentally derived foldons and the theoretically derived closed loops indicates that the closed loop hypothesis may provide a useful framework for analyzing such experimental data. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

9.
The conformation of an unusual slipped loop DNA structure exhibited by the sequence d(GAATTCCCGAATTC)2 is determined using a combination of geometrical and molecular mechanics methods. This sequence is known to form a B-DNA-like duplex with the central non-complementary cytosines extruded into single stranded loop regions. The unusual feature is that the interior guanine does not pair with the cytosine across, instead, it pairs with the cytosine upstream by skipping two cytosines, leading to a slipped loop DNA structure with the loops staggered by two base pairs. The two loops, despite being very small, can fold across minor or major groove symmetrically or asymmetrically disposed, with one of the loop bases partially blocking the major or minor groove. Most interestingly, for certain conformations, the loop bases approach one another at close proximity so as to engage even in base pairing as well as base stacking interactions across the major groove. While such pairing and stacking are common in the tertiary folds of RNA, this is the first time that such an interaction is visualized in a DNA. This observation demonstrates that a W-C pair can readily be accomplished in a typical slipped loop structure postulated for DNA. Such tertiary loop interaction may prevent access to regulatory proteins across the major groove of the duplex DNA, thus providing a structure-function relation for the occurrence of slipped loop structure in DNA. Contribution no. 839 from this department  相似文献   

10.
Acquiring the three‐dimensional structure of a protein from its amino acid sequence alone, despite a great deal of work and significant progress on the subject, is still an unsolved problem. SSThread, a new template‐free algorithm is described here that consists of making several predictions of contacting pairs of α‐helices and β‐strands derived from a database of experimental structures using a knowledge‐based potential, secondary structure prediction, and contact map prediction followed by assembly of overlapping pair predictions to create an ensemble of core structure predictions whose loops are then predicted. In a set of seven CASP10 targets SSThread outperformed the two leading methods for two targets each. The targets were all β‐strand containing structures and most of them have a high relative contact order which demonstrates the advantages of SSThread. The primary bottlenecks based on sets of 74 and 21 test cases are the pair prediction and loop prediction stages. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
The lengths of G-tracts and their connecting loop sequences determine G-quadruplex folding and stability. Complete understanding of the sequence-structure relationships remains elusive. Here, single-loop G-quadruplexes were investigated using explicit solvent molecular dynamics (MD) simulations to characterize the effect of loop length, loop sequence, and G-tract length on the folding topologies and stability of G-quadruplexes. Eight loop types, including different variants of lateral, diagonal, and propeller loops, and six different loop sequences [d0 (i.e., no intervening residues in the loop), dT, dT(2), dT(3), dTTA, and dT(4)] were considered through MD simulation and free energy analysis. In most cases the free energetic estimates agree well with the experimental observations. The work also provides new insight into G-quadruplex folding and stability. This includes reporting the observed instability of the left propeller loop, which extends the rules for G-quadruplex folding. We also suggest a plausible explanation why human telomere sequences predominantly form hybrid-I and hybrid-II type structures in K(+) solution. Overall, our calculation results indicate that short loops generally are less stable than longer loops, and we hypothesize that the extreme stability of sequences with very short loops could possibly derive from the formation of parallel multimers. The results suggest that free energy differences, estimated from MD and free energy analysis with current force fields and simulation protocols, are able to complement experiment and to help dissect and explain loop sequence, loop length, and G-tract length and orientation influences on G-quadruplex structure.  相似文献   

12.
Protein nanopores have attracted much interest for nucleic acid sequencing, chemical sensing, and protein folding at the single molecule level. The outer membrane protein OmpG from E. coli stands out because it forms a nanopore from a single polypeptide chain. This property allows the separate engineering of each of the seven extracellular loops that control access to the pore. The longest of these loops, loop 6, has been recognized as the main gating loop that closes the pore at low pH values and opens it at high pH values. A method was devised to pin each of the loops to the embedding membrane and measure the single‐pore conductances of the resulting constructs. The electrophysiological and complementary NMR measurements show that the pinning of individual loops alters the structure and dynamics of neighboring and distant loops in a correlated fashion. Pinning loop 6 generates a constitutively open pore and patterns of concerted loop motions control access to the OmpG nanopore.  相似文献   

13.
Molecular functions of intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs), such as molecular recognition and cellular signaling, are ascribed to dynamic changes in the conformational space in response to binding of target molecules. Sortase, a transpeptitase in Gram-positive bacteria, has an IDR in a loop which undergoes a disordered-to-ordered transition (called "disordered loop"), accompanying a tilt of another loop ("dynamic loop"), upon binding of a signal peptide and a calcium ion. In this study, all-atom conformational ensembles of sortase were calculated for the four different binding states (with/without the peptide and with/without a calcium ion) by the multiscale enhanced sampling (MSES) simulation to examine how the binding of the peptide and/or calcium influences the conformational ensemble. The MSES is a multiscale and multicopy simulation method that allows an enhanced sampling of the all-atom model of large proteins including explicit solvent. A 100 ns MSES simulation of the ligand-free sortase using 20 replicas (in total 2 μs) demonstrated large flexibility in both the disordered and dynamic loops; however, their distributions were not random but had a clear preference which populates the N-terminal part of the disordered loop near the bound form. The MSES simulations of the three binding states clarified the allosteric mechanism of sortase: the N- and C-terminal parts of the disordered loop undergo a disorder-to-order transition independently of each other upon binding of the peptide and a calcium ion, respectively; however, upon binding of both ligands, the two parts work cooperatively to stabilize the bound peptide.  相似文献   

14.
Tetraurea calix[4]arenes 2 have been synthesized in which two adjacent aryl urea residues are connected to a loop by an aliphatic chain -O-(CH(2))(n)-O-. The remaining urea residues have a bulky 3,5-di-tert-butylphenyl residue and an omega-alkenyloxyphenyl residue. Since this bulky residue cannot pass through the loop, only one homodimer (22) is formed in apolar solvents, for steric reasons, in which the two alkenyl residues penetrate the two macrocyclic loops. Covalent connection of these alkenyl groups by olefin metathesis followed by hydrogenation creates compounds 3, which consist of molecules with hitherto unknown topology. Their molecular structure was confirmed by (1)H NMR spectroscopy and ESIMS, and for one example by single-crystal X-ray analysis.  相似文献   

15.
We approximate the loop motions of various proteins by using a coarse-grained model and the theory of rubberlike elasticity of polymer chains. The loops are considered as chains where only the first and the last residues thereof are tethered by their connections to the main structure; while within the loop, the loop residues are connected only to their sequence neighbors. We applied these approximate models to five proteins. Our approximation shows that the loop motions can usually be computed locally which shows these motions are robust and not random. But most interestingly, the new method presented here can be used to compute the likely motions of loops that are missing in the structures.  相似文献   

16.
Alpha-synuclein, the main protein component of fibrillar deposits found in Parkinson's disease, is intrinsically disordered in vitro. Site-specific information on the protein conformation has been obtained by biosynthetic incorporation of an unnatural amino acid, 5-fluorotryptophan (5FW), into the recombinant protein. Using fluorescence and 19F NMR spectroscopy, we have characterized three proteins with 5FW at positions 4, 39, and 94. Steady-state emission spectra (maxima at 353 nm; quantum yields approximately 0.2) indicate that all three indole side chains are exposed to the aqueous medium. Virtually identical single-exponential excited-state decays (tau approximately 3.4 ns) were observed in all three cases. Single 19F NMR resonances were measured for W4, W39, and W94 at -49.0 +/- 0.1 ppm. Our analysis of the spectroscopic data suggests that the protein conformations are very similar in the regions near the three sites.  相似文献   

17.
The role of the array of aromatic amino acid side chains located close to the chromophore binding loop of photoactive yellow protein (PYP) was studied using the alanine-substitution mutagenesis. Phe92, Tyr94, Phe96 and Tyr98 were replaced with alanine (F92A, Y94A, F96A and Y98A, respectively), then these mutants were characterized by UV-visible absorption spectra, circular dichroism (CD) spectra, thermal stability and photocycle kinetics. Absorption maxima of F92A, Y94A, F96A and Y98A were 444, 442, 439 and 447 nm, respectively, different to wild type (WT) at 446 nm. Far-UV CD spectra of mutants other than F92A were different from WT, indicating that Tyr94, Phe96 and Tyr98 maintain the native secondary structure of PYP. Mid-point temperatures of thermal denaturation of F92A, Y94A and F96A, estimated by the CD signal at 222 nm, were 5-10 degrees C lower than WT. Time constants of the photocycle estimated by flash-induced absorbance change were 0.36 s for WT and 1.4 s for Y98A, however, 100, 30 and 3000 times slower than WT for F92A, Y94A and F96A, respectively. Tyr98 is located in the loop region, whereas Phe92, Tyr94 and Phe96 are incorporated in the beta4 strand, showing that aromatic amino acid residues in the beta-sheet regulate the absorption spectrum, thermal stability and photocycle of PYP. Aromatic rings of Phe92, Tyr94 and Phe96 lie nearly perpendicular to the aromatic ring of Phe75 or chromophore. Possible weak hydrogen bonds between the aromatic ring hydrogen and pi-electrons of these residues are discussed.  相似文献   

18.
This paper asks whether interactions between phenylalanine (Phe) residues of the non-hydrogen-bonded cross-strand pairs of antiparallel beta-sheets are important and finds that they are not. Peptides 1a-d [o-BuO-C6H4CO-AA1-Orn(i-PrCO-Hao)-Phe-Ile-AA5-NHMe: 1a AA1, AA5 = Phe; 1b AA1, AA5 = Cha (cyclohexylalanine); 1c AA1 = Phe, AA5 = Cha; 1d AA1 = Cha, AA5 = Phe] provide a sensitive system for probing interactions between phenylalanine residues. These peptides form beta-sheet homodimers in organic solvents. When the homodimers of different peptides are mixed, they equilibrate to form heterodimers, as well as homodimers. The position of the equilibrium reflects the propensity of the first (AA1) and fifth (AA5) amino acids to interact within the non-hydrogen-bonded cross-strand pairs of beta-sheets. Mixing peptides 1a-d in all six possible binary combinations provides a measure of the relative propensities of Phe and Cha to pair. Analysis by 1H NMR spectroscopy of the equilibrium constants in CDCl3 solution reveals no significant preference for the formation of Phe-Phe pairs. The equilibria in all six experiments are essentially statistical (K approximately 4), and no (<0.1 kcal/mol) preference is seen for any pairing combination. A survey of Phe-Phe pairs in the Interchain beta-Sheet Database (http://www.igb.uci.edu/servers/icbs/) corroborates that little significant contact occurs between the aromatic rings in the non-hydrogen-bonded cross-strand pairs of antiparallel beta-sheets at the interface between polypeptide chains. Even though contacts between aromatic rings are favorable when they are of suitable geometry, the energetic price of achieving suitable geometries appears to offset the energetic benefits of such contacts in the current model system, as well as in proteins.  相似文献   

19.
Guanine-rich DNA sequences can form a large number of structurally diverse quadruplexes. These vary in terms of strand polarity, loop composition, and conformation. We have derived guidelines for understanding the influence of loop length on the structure adopted by intramolecular quadruplex-forming sequences, using a combination of experimental (using CD and UV melting data) and molecular modeling and simulation techniques. We find that a parallel-stranded intramolecular quadruplex structure is the only possible fold when three single residue loops are present. When single thymine loops are present in combination with longer length loops, or when all loops are longer than two residues, both parallel- and antiparallel-folded structures are able to form. Multiple conformations of each structure are likely to coexist in solution, as they were calculated to have very similar free energies.  相似文献   

20.
For certain DNA hairpin loops, a CG closing base pair has enhanced stability over other closing base pairs, which cannot be explained by the current nearest-neighbor model. We report the use of three-carbon (C3) spacers to investigate the expandability of DNA hairpin loops and the coupling between the loop and closing base pair. Inserting the C3-spacers at most positions in these model loops produced only a modest stabilization or destabilization except for insertion between the 5' end of the loop and the CG closing base pair, which gave a large destabilization. Further investigation on tetraloops and triloops with other closing base pairs established that this destabilization is specific to the unusually stable CG closing base pair. Studies with the nucleotide analogues 2-aminopurine and 2,6-diaminopurine indicated that this stabilization may be due to coupling between functional groups on the first base of the loop and the CG closing base pair. The C3-spacers provide a simple way to interrupt potential interactions and thereby probe loop/stem coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号