首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate isotope ratio measurements are of high importance in various scientific fields, ranging from radio isotope geochronology of solids to studies of element isotopes fractionated by living organisms. Instrument limitations, such as unresolved isobaric inferences in the mass spectra, or cosampling of the material of interest together with the matrix material may reduce the quality of isotope measurements. Here, we describe a method for accurate isotope ratio measurements using our laser ablation ionization time‐of‐flight mass spectrometer (LIMS) that is designed for in situ planetary research. The method is based on chemical depth profiling that allows for identifying micrometer scale inclusions embedded in surrounding rocks with different composition inside the bulk of the sample. The data used for precise isotope measurements are improved using a spectrum cleaning procedure that ensures removal of low quality spectra. Furthermore, correlation of isotopes of an element is used to identify and reject the data points that, for example, do not belong to the species of interest. The measurements were conducted using IR femtosecond laser irradiation focused on the sample surface to a spot size of ~12 μm. Material removal was conducted for a predefined number of laser shots, and time‐of‐flight mass spectra were recorded for each of the ablated layers. Measurements were conducted on NIST SRM 986 Ni isotope standard, trevorite mineral, and micrometer‐sized inclusions embedded in aragonite. Our measurements demonstrate that element isotope ratios can be measured with accuracies and precision at the permille level, exemplified by the analysis of B, Mg, and Ni element isotopes. The method applied will be used for in situ investigation of samples on planetary surfaces, for accurate quantification of element fractionation induced by, for example, past or present life or by geochemical processes.  相似文献   

2.
We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6–21% for pressed pellets and 3–21% for fused solids were obtained from n = 3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches.  相似文献   

3.
We have demonstrated an on‐line laser ablation sampling system and coupling of the system to liquid chromatography (LC) using an infrared (IR) laser to ablate and transfer materials into a flowing solvent stream. With this approach, samples are deposited on a microscope slide mounted on a translation stage and ablated in transmission geometry using a pulsed mid‐IR laser. The ablated material is captured in an exposed flowing solvent stream that carries the ablated material to the electrospray source. Post‐ablation separation is accomplished using a capillary column downstream of the capture zone. The performance of the system was assessed using peptide and protein mixtures ablated from the target and analyzed with and without LC separation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Detection efficiencies of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), defined as the ratio of ions reaching the detector and atoms released by LA were measured. For this purpose, LA of silicate glasses, zircon, and pure silicon was performed using nanosecond (ns) as well as femtosecond (fs) LA. For instance, ns-LA of silicate glass using helium as in-cell carrier gas resulted in detection efficiencies between approximately 1E-7 for low and 3E-5 for high mass range elements which were, in addition, almost independent on the laser wavelength and pulse duration chosen. In contrast, the application of argon as carrier gas was found to suppress the detection efficiencies systematically by a factor of up to 5 mainly due to a less efficient aerosol-to-ion conversion and ion transmission inside the ICP-MS.  相似文献   

5.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) using liquid metal ion guns (LMIGs) is now sensitive enough to produce molecular-ion images directly from biological tissue samples. Primary cluster ions strike a spot on the sample to produce a mass spectrum. An image of this sample is achieved by rastering the irradiated point over the sample surface. The use of secondary ion mass spectrometry for mapping biological tissue surfaces provides unique analytical capabilities; in particular, it enables in a single acquisition a large variety of biological compounds to be localised on a micrometer scale and scrutinised for colocalisations. Without any treatment of the sample, this method is fully compatible with subsequent and complementary analyses like fluorescence microscopy, histochemical staining, or even matrix-assisted laser desorption/ionisation imaging. Basic physical concepts, required instrumentation (ion source and mass analyzer), sample preparation methods, image acquisition, image processing, and emerging biological applications will be described and discussed.  相似文献   

6.
A laser ablation time of flight mass spectrometry (LA-TOF-MS) technique was applied to the isotopic analysis of variety of microparticles. Sample with only two Gd2O3 particles with ~ 10 μm in diameter, the mixed particles composed of Gd2O3, Ni, and Pd, and silica particles coated with few tens of ng of Gd have been analyzed. The ablation of particles was achieved by a second harmonic of a Nd:YAG laser, 532 nm with loading these particles onto various metal matrices such as Ta, Zn, and Cu. Isotopic analysis for adopted sample was successfully carried out with good mass resolution. The loaded two small sized particles (~ 10 μm) were analyzed with reasonable isotopic ratios for enough time to observe the ion signal by the 10 Hz laser. In the case of coated particle, isotopic abundances of Gd (~ 50 ng/particle) were observed and the measured isotopic ratio reasonably agreed to the natural abundance of Gd. As far as the sample loading plates (matrix) are concerned, Ta and Cu plates showed more improved detection sensitivity and mass resolution. Direct analysis of swiped-mixed metal particles onto the cotton textile shows the possibility for an application of environmental sample analysis in nuclear safeguards.  相似文献   

7.
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.  相似文献   

8.
Relative mass transport efficiencies of near infrared (λ = 795 nm) femtosecond laser generated brass aerosols in helium were measured by ICP-MS applying different ablation cells with short and long washout times. It was found that the transport efficiencies are independent of the cell used within the mutual experimental uncertainties. This finding was confirmed by additional measurements providing the absolute particle mass transport efficiencies of femtosecond laser ablation in He. Here, the transport efficiencies were determined by weighing the samples before and after ablation with a micro-balance, collecting the particles by low-pressure impaction, and evaluating the impacted masses quantitatively by total reflection X-ray fluorescence. Within the experimental uncertainties (± 9–19%) the same absolute transport efficiency (about 77%) was found for all cells applied. This efficiency value can be regarded as a lower limit of the absolute mass transport efficiency since mass losses in the impactor are difficult to quantify.  相似文献   

9.
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used for chemical analysis of surfaces. ToF-SIMS is a powerful tool for polymer science because it detects a broad mass range with good mass resolution, thereby distinguishing between polymers that have similar elemental compositions and/or the same types of functional groups. Chemical labeling techniques that enhance contrast, such as deuterating or staining one constituent, are generally unnecessary. ToF-SIMS can generate both two-dimensional images and three-dimensional depth profiles, where each pixel in an image is associated with a complete mass spectrum. This Review begins by introducing the principles of ToF-SIMS measurements, including instrumentation, modes of operation, strategies for data analysis, and strengths/limitations when characterizing polymer surfaces. The sections that follow describe applications in polymer science that benefit from characterization by ToF-SIMS, including thin films and coatings, polymer blends, composites, and electronic materials. The examples selected for discussion showcase the three standard modes of operation (spectral analysis, imaging, and depth profiling) and highlight practical considerations that relate to experimental design and data processing. We conclude with brief comments about broader opportunities for ToF-SIMS in polymer science.  相似文献   

10.
The paper describes the application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the isotopic analysis of individual uranium-oxide particles. The procedure developed is suitable for the accurate measurement of 234U, 235U, 236U and 238U isotopes in single actinide particles with lateral dimensions down to 10 μm. The 235U/238U isotope ratios can be obtained with a precision of a few percent relative standard deviation using a single collector ICP-MS instrument. The precision could be improved by the use of slow ablation and by taking several LA-ICP-MS replicate spectra on the same particle investigated. For the minor isotopes use of higher mass resolution (R = 4000) was necessary in some cases to avoid spectral interferences. The technique developed offers a rapid and accurate possibility for the isotopic composition determination of uranium-containing individual particles in environmental and safeguards samples.  相似文献   

11.
An analytical system for simultaneously monitoring laser-ablation mass spectra and laser-induced breakdown spectra for solid sample has been developed. The performance of the developed system is evaluated by measuring characteristics of laser-induced plasma such as lifetime of ions inside the plasma and laser power dependence of mass resolution for solid samples. Adopted samples are gadolinium plate, gadolinium coated on stainless steel plate, and one of the NIST standard samples, C-1248 (Ni–Cu alloy). The threshold laser energy in obtaining mass spectrum was dependent on the type of sample characteristics in the order of a few MW/cm2, while a few hundred MW/cm2 was necessary in order to observe emission signal. When laser energy was increased enough to produce emission signal, mass resolution of the time-of-flight mass spectrum was severely deteriorated. The lifetime of the continuum ion signal was estimated 200 and 250 ns for Gd plate and C-1248, respectively, by monitoring emission signals, while the lifetime of ions near sample surface was estimated as 400 ns and 430 ns for Gd plate and C-1248, respectively. The deterioration of mass resolution can be understood as originating from the space charge effect in high plasma density in a given space and different velocity distribution of ions inside the plasma, while longer lifetime of ions near sample surface can be understood as originating from speed of ion ejection near the sample surface. The details of the characteristics of laser-induced plasma are discussed and optimum experimental conditions for simultaneous monitoring are suggested.  相似文献   

12.
随着质谱技术的不断发展,对超高质量颗粒物质的分析已经成为质谱领域研究的一个重要方向.离子阱颗粒质谱(particle ion trap mass spectrometry)作为用于完整颗粒质量分析的有利工具,拓展了质谱技术在巨大颗粒物质量分析中的应用范围.本文对离子阱颗粒质谱仪器的研究进展及其在各个领域的应用进行了综述,并展望了离子阱颗粒质谱未来的发展趋势.  相似文献   

13.
Liquid secondary ion mass spectrometry (L-SIMS) of six new functionalized macrocycles was investigated. All six compounds yielded abundant fragment ions and protonation molecular ions [M + H](+) under L-SIMS conditions. The proposed fragmentation mechanisms were supported by high-resolution accurate mass data from Fourier transform ion cyclotron resonance mass spectrometric and MS(n) experiments on using sustained off-resonance irradiation collision-induced dissociation.  相似文献   

14.
In this study, we use an ion funnel (IF) at ambient pressure to enhance the sensitivity of secondary electrospray ionization (SESI). Atenolol, salbutamol and cocaine as test compounds are delivered to the SESI interface in the gas phase and are charged with three nano electrosprays. In our experiments, we show that the compounds can be detected at concentrations in the low pptv range, which is an increase of two orders of magnitude compared with the results without the IF. With a standard SESI interface, the compounds could not be detected at all. With the use of the SESI IF interface for the headspace analysis of bananas and limes, we can detect many more compounds and at higher intensities than with a standard SESI interface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this article, orthogonal projection method (OPM) is introduced which could perform multi-ion quantitative MS with signal of electrostatic ion beam trap (EIBT), and its application has been demonstrated by numerical modeling. To acquire periodic current signal, a model of EIBT with cylindrical-detector is set up to simulate ions' oscillatory motion. Whereafter, OPM is introduced and applied for quantitative MS with sampling time being as short as 200 μs. Comparing with fast Fourier transform (FFT), the MS acquired by OPM is characterized by a more readable spectrum, a much shortened sampling time and the ability to do quantitative analysis. Within the optimum sampling time range, quantitative MS could be performed with accuracy of over 90%. It is found that the lower limit and the upper limit of the optimum sampling time range are all proportional to M(3/2)/δM and its relation is specified by linear regression. Aided by the results of FFT, OPM is applied to a compound tested signal induced by three kinds of ions. It shows that OPM could be performed respectively to each kind of ions without interference from other component of the signal. The resolving power acquired by OPM is about 75 000 with sampling time as short as 10 ms, and the quantitative result that acquired is quite accurate.  相似文献   

16.
Laser microprobe mass spectrometry (LMMS) is a technique for local analysis of inorganic and organic constituents in the m range. This paper will focus on selected applications. First of all, element detection is illustrated by data from a 50-nm TiW layer on silicon and by the detection of residual Cr on HPLC column packing material. Speciation capabilities of LMMS are demonstrated on pure substances and on a coated neo-ceramic. Finally, the feasibility of organic analysis is shown in the case of a biologically active compound and dyed cloth fibres.  相似文献   

17.
In this study, we used secondary electrospray ionization mass spectrometry assisted by an ion funnel (IF) operating at ambient pressure to find compounds in the mass range of 100–500 m/z in online breath fingerprinting experiments. In low‐resolution experiments conducted on an ion trap instrument, we found that pyridine is present in breath of individuals long after drinking coffee. In high‐resolution experiments conducted on a Fourier transform ion cyclotron resonance, we found more than 30 compounds in the mass range of 100–500 m/z in analogous online breath experiments. More than a third of these compounds have molecular weights above 200 Daltons and have not been mentioned in previous studies. In low‐resolution experiments as well as experiments without the IF, these compounds could not be detected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A laser ablation setup including outer chamber, sample tube, sample holder and transport tubing was modelled and optimized using advanced computational fluid dynamics techniques. The different components of the setup were coupled and the whole device was modelled at once. The mass transport efficiency and transit times of near infrared femtosecond (fs) laser generated brass aerosols in pure argon and helium–argon mixtures were calculated at experimentally optimized conditions and a transient signal was constructed. The use of helium or argon did not influence the mass transport efficiency, but the signal structure changed. The signal fine structure was retrieved and experimentally validated. Bimodal peak structures were observed that seemed to originate from turbulent effects in the tubing connecting a Y-connector and the injector.  相似文献   

19.
This paper describes a simple procedure for the direct analysis and determination of multiple elements in dried blood samples on a filter membrane using laser ablation coupled with inductively coupled plasma mass spectrometry (LA-ICP-MS). With this technique, we simultaneously quantified 13 elements in whole blood: Be, Mn, Co, Ni, Tl, Bi, Sb, Pb, Cu, Zn, Ba, Mg, and Cd. The measured accuracies was in agreement with the Seronorm CRM certified values, except for Mn, Zn, Ba and Cd, which presented absolute differences higher than the expanded uncertainty for these elements. The within-run precision was less than 5.7% (relative standard deviation, RSD), except for the analyses of Be, and Mn (8.6% and 11.1%, respectively). The reproducibility (between-run precision) was calculated in terms of the RSD obtained for 12 analyses (i.e., four replicates of each sample in three analytical runs). Apart from Be, Mn, and Zn, the reproducibilities of all the elements listed above ranged between 4.0% and 8.5%. In contrast, for Cd, the concentration obtained was significantly different from the certified value; analyses of this element exhibited low reproducibility. Applying the matrix-matched calibration method, the accuracy for Cd measured was in agreement with both SRM966 and BCR 635; thus, matrix-matched calibration is a practical means of overcoming matrix-enhancement effects for the quantification of Cd. Sample throughput (ca. 5 min per sample) made it possible to rapidly screen a larger number of samples relative to other techniques that require time-consuming sample preparation steps (e.g., removal of a portion of the solid sample or digestion).  相似文献   

20.
For this study, multiphoton ionization/mass spectrometry using an ultraviolet (UV) femtosecond laser was employed for the trace analysis of organic compounds. Some of the molecules, such as dioxins, contain several chlorine atoms and have short excited-state lifetimes due to a "heavy atom" effect. A UV femtosecond laser is, then, useful for efficient resonance excitation and subsequent ionization. A technique of multiphoton ionization using an extremely short laser pulse (e.g., <10 fs), referred to as "impulsive ionization," may have a potential for use in fragmentation-free ionization, thus providing information on molecular weight in mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号