首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We use the recent KamLAND observations to predict the solar antineutrino spectrum at some confidence limits. We find a scaling of the antineutrino probability with respect to the magnetic field profile—in the sense that the same probability function can be reproduced by any profile with a suitable peak field value—that can be utilized to obtain the general shape ofthe solar antineutrino spectrum. This scaling and the upper bound on the solar antineutrino event rate, which can be derived from the data, lead to: 1) an upper bound on the solar antineutrino flux and 2) the prediction of their energy spectrum. We get \(\phi _{\bar \nu } < 3.8 \times 10^{ - 3} \phi (^8 B)\) or \(\phi _{\bar \nu } < 5.5 \times 10^{ - 3} \phi (^8 B)\) at 95% C.L., assuming Gaussian or Poissonian statistics, respectively. For 90% C.L., these become \(\phi _{\bar \nu } < 3.4 \times 10^{ - 3} \phi (^8 B)\) and \(\phi _{\bar \nu } < 4.9 \times 10^{ - 3} \phi (^8 B)\). This provides an improvement by a factor of 3–5 with respect to the existing bounds. These limits are quite general and independent of the detailed structure of the magnetic field in the solar interior.  相似文献   

3.
The primary goal of KamLAND is a search for the oscillation of \({\bar{\nu }}_\mathrm{e}\) ’s emitted from distant power reactors. The long baseline, typically 180 km, enables KamLAND to address the oscillation solution of the “solar neutrino problem” with \({\bar{\nu }}_{e} \) ’s under laboratory conditions. KamLAND found fewer reactor \({\bar{\nu }}_{e} \) events than expected from standard assumptions about \(\overline{\nu }_e\) propagation at more than 9 \(\sigma \) confidence level (C.L.). The observed energy spectrum disagrees with the expected spectral shape at more than 5 \(\sigma \) C.L., and prefers the distortion from neutrino oscillation effects. A three-flavor oscillation analysis of the data from KamLAND and KamLAND + solar neutrino experiments with CPT invariance, yields \(\Delta m_{21}^2 \) = [ \(7.54_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) , \(7.53_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) ], tan \(^{2}\theta _{12}\) = [ \(0.481_{-0.080}^{+0.092} \) , \(0.437_{-0.026}^{+0.029} \) ], and sin \(^{2}\theta _{13}\) = [ \(0.010_{-0.034}^{+0.033} \) , \(0.023_{-0.015}^{+0.015} \) ]. All solutions to the solar neutrino problem except for the large mixing angle region are excluded. KamLAND also demonstrated almost two cycles of the periodic feature expected from neutrino oscillation effects. KamLAND performed the first experimental study of antineutrinos from the Earth’s interior so-called geoneutrinos (geo \({\bar{\nu }}_{e} \) ’s), and succeeded in detecting geo \({\bar{\nu }}_{e} \) ’s produced by the decays of \(^{238}\) U and \(^{232}\) Th within the Earth. Assuming a chondritic Th/U mass ratio, we obtain \(116_{-27}^{+28} {\bar{\nu }}_{e}\) events from \(^{238}\) U and \(^{232}\) Th, corresponding a geo \({\bar{\nu }}_{e}\) flux of \(3.4_{-0.8}^{+0.8}\times \) 10 \(^{6}\) cm \(^{-2}\)  s \(^{-1}\) at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo \({\bar{\nu }}_{e} \) rate.  相似文献   

4.
KamLAND measured the ν̄e’s flux from distant nuclear reactors, and found fewer events than expected from standard assumptions about ν̄e propagation at the 99.998% confidence level (C.L.). The observed energy spectrum disagrees with the expected spectral shape at 99.6% C.L., and prefers the distortion from neutrino oscillation effects. A two-flavor oscillation analysis of the data from KamLAND and solar neutrino experiments with CPT invariance, yields Δm2=7.90.5+0.6×105 eV2 and tan2θ=0.400.07+0.10. All solutions to the solar neutrino problem except for the large mixing angle (LMA) region are excluded. KamLAND succeeded in detecting geoneutrinos produced by the decays of 238U and 232Th within the Earth. The total observed number of 4.5 to 54.2, assuming a Th/U mass concentration ratio of 3.9 is consistent with 19 predicted by geophysical models. This detection allows better estimation of the abundances and distributions of radioactive elements in the Earth, and of the Earth’s overall heat budget.  相似文献   

5.
Takaaki Kajita 《Pramana》2006,67(4):639-653
Recent results from solar, reactor, atmospheric and long baseline (K2K) experiments are discussed. With the improved data statistics and analyses, our knowledge on the neutrino masses and mixing angles are steadily improving. T2K is the next generation neutrino oscillation experiment between J-PARC in Tokai and Super-Kamiokande. This experiment will start in 2009. This experiment is expected to improve the current knowledge on the neutrino masses and mixings substantially.  相似文献   

6.
We explore the impact of the data from the KamLAND experiment in constraining neutrino mass and mixing angles involved in solar neutrino oscillations. In particular, we discuss the precision with which we can determine the mass squared difference Δm 2 and the mixing angle θ from combined solar and KamLAND data. We show that the precision with which Δm 2 can be determined improves drastically with the KamLAND data, but the sensitivity of KamLAND to the mixing angle is not as good. We study the effect of enhanced statistics in KamLAND as well as reduced systematics in improving the precision. We also show the effect of the SNO salt data in improving the precision. Finally, we discuss how a dedicated reactor experiment with a baseline of 70 km can improve the θ sensitivity by a large amount.  相似文献   

7.
These lectures present the status of the Tokai to Kamioka Experiment (T2K) which just started taking data in early 2010. The goals and methodology for the experiment are presented as well as the challenges and prospects for determining the neutrino mixing parameters leading to neutrino oscillation with a particular attention to the determination of the mixing angle θ13.  相似文献   

8.
The T2K (Tokai-to-Kamioka) experiment is a long baseline neutrino oscillation experiment designed to probe the θ 13 neutrino mixing parameter by looking for the appearance of ν e in an almost pure ν μ beam. The concurrent measurement of the ν μ disappearance allows refined measurements of the atmospheric Δm 2 and θ 23 mixing parameters.  相似文献   

9.
Physics of Atomic Nuclei - The international accelerator neutrino experiment T2K (Tokai-to-Kamioka) began accumulating data in 2010 and has since then accomplished 10 runs in the neutrino and...  相似文献   

10.
The KamLAND experiment has determined a precise value for the neutrino oscillation parameter Deltam21(2) and stringent constraints on theta12. The exposure to nuclear reactor antineutrinos is increased almost fourfold over previous results to 2.44 x 10(32) proton yr due to longer livetime and an enlarged fiducial volume. An undistorted reactor nu[over]e energy spectrum is now rejected at >5sigma. Analysis of the reactor spectrum above the inverse beta decay energy threshold, and including geoneutrinos, gives a best fit at Deltam21(2)=7.58(-0.13)(+0.14)(stat) -0.15+0.15(syst) x 10(-5) eV2 and tan2theta12=0.56(-0.07)+0.10(stat) -0.06+0.10(syst). Local Deltachi2 minima at higher and lower Deltam21(2) are disfavored at >4sigma. Combining with solar neutrino data, we obtain Deltam21(2)=7.59(-0.21)+0.21 x 10(-5) eV2 and tan2theta12=0.47(-0.05)+0.06.  相似文献   

11.
The neutrino on-axis and off-axis beam was studied in the near neutrino detector of the longbaseline experiment T2K: beam composition, long-term stability, and spatial asymmetry.  相似文献   

12.
H A TANAKA 《Pramana》2012,79(5):941-952
The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations in a ~600 MeV muon neutrino beam sent at 295 km from the Japan Proton Accelerator Complex (J-PARC) to the Super Kamiokande (SK) detector in Kamioka. The primary goals of T2K are to search for the appearance of electron neutrinos at SK resulting from ?? 13?>?0 and to precisely measure ?? 23 and $\Delta m^2_{32}$ via ?? ?? disappearance. We report on T2K results obtained from neutrino data taken in 2010 and 2011.  相似文献   

13.
The Kamioka Liquid scintillator Anti-Neutrino Detector is used in a search for single neutron or two-neutron intranuclear disappearance that would produce holes in the -shell energy level of (12)C nuclei. Such holes could be created as a result of nucleon decay into invisible modes (inv), e.g., n--> 3v or nn--> 2v. The deexcitation of the corresponding daughter nucleus results in a sequence of space and time-correlated events observable in the liquid scintillator detector. We report on new limits for one- and two-neutron disappearance: tau(n--> inv) > 5.8 x 10(29) years and tau (nn--> inv) > 1.4 x 10(30) years at 90% C.L. These results represent an improvement of factors of approximately 3 and >10(4) and over previous experiments.  相似文献   

14.
15.
KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.  相似文献   

16.
We present results of a study of neutrino oscillation based on a 766 ton/year exposure of KamLAND to reactor antineutrinos. We observe 258 nu (e) candidate events with energies above 3.4 MeV compared to 365.2+/-23.7 events expected in the absence of neutrino oscillation. Accounting for 17.8+/-7.3 expected background events, the statistical significance for reactor nu (e) disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from nu (e) oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives Deltam(2)=7.9(+0.6)(-0.5)x10(-5) eV(2). A global analysis of data from KamLAND and solar-neutrino experiments yields Deltam(2)=7.9(+0.6)(-0.5)x10(-5) eV(2) and tan((2)theta=0.40(+0.10)(-0.07), the most precise determination to date.  相似文献   

17.
Results from Super-Kamiokande-I’s entire 1496 live days of solar neutrino data are presented, including the absolute flux, energy spectrum, zenith angle (day/night) and seasonal variation. The possibility of MSW and vacuum oscillations is discussed in light of these results. Results from the first 1289 days of Super-K-I’s atmospheric neutrino analysis are also presented, including the evidence for νμν τ oscillations, against νμ → νsterile oscillations, and the current limits on proton decay. Finally, results based on 56 × 1019 protons on target are given for the K2K long-baseline neutrino oscillation experiment.  相似文献   

18.
吴崇试  李中华 《中国物理 C》2000,24(12):1142-1148
分析了脱耦合项对于原子核转动惯量的重要影响.总结了奇质量核K=1/2带转动惯量变化规律的新特点.在此基础上讨论了193T1中3条新的超形变带的内部结构.目前尚无足够证据能够确认它们都是K=1/2带.  相似文献   

19.
Journal of Experimental and Theoretical Physics - New data concerning neutrino oscillations as obtained in the T2K and NOvA accelerator neutrino experiments are considered. Both collaborations...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号