首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(epsilon-caprolactone) (PCL) composite samples were prepared by polymerization and direct molding. The starting compound was epsilon-caprolactone monomer liquid combined with cellulose and inorganic fillers, using aluminium triflate as a catalyst at 80 degrees C, for 6 or 24 h. Cylinder-shaped PCL composite samples with a homogeneously dispersed cellulose filler were prepared with (-)M(n) = 4 600 ((-)M(w)/(-)M(n) = 2.9). The mechanical properties of the PCL composite samples were studied using compression test methods. The strength of a PCL composite with 50 wt.-% cellulose filler (10.8 MPa) was found to be lower than the PCL sample without fillers (19.2 MPa). The biobased content of the PCL composite with 50 wt.-% cellulose filler (51.67%) measured using accelerated mass spectrometry (AMS) was slightly higher than the carbon ratio of cellulose in the starting powder samples (41.3 mol-%). The biobased content of the polymer composite powders by AMS was found not to be affected by the presence of inorganic fillers, such as talc. The rate and extent of biodegradation, caused by Amano Lipase PS, of the PCL composite sample with cellulose filler (40% degradation in 4 d) was the same as that of a PCL sample without the cellulose filler.  相似文献   

2.
The aim of the present work is to develop novel bio-based lightweight material with improved tensile and thermal properties. Spent tea leaf powder (STLP) was used as a filler to improve the tensile and thermal properties of polypropylene carbonate (PPC). Tea is an important material used in hotels and households, and spent tea leaf is a resulting solid waste. Composite films with STLP were obtained by the solution casting method. These films were characterized by optical and scanning electron microscopy, Fourier transform-infrared spectroscopy, thermogravimetric analysis, and tensile testing to examine the effect of filler content on the properties of the composites. The results showed that composite films have increased tensile strength due to enhanced interfacial adhesion between the filler and the matrix. In addition, the composite films also exhibited higher thermal degradation temperatures than pure polypropylene carbonate. The morphology results indicate that there is a good interface interaction between STLP and PPC. Results of the study reveal STLP to be a promising green filler for polymer plastics.  相似文献   

3.
Transparent thin films of calcium‐ion‐incorporated polymer composites were synthesized with calcium carbonate (CaCO3) and polymers such as poly(acrylic acid) (PAA), poly(ethylene glycol) (PEG), and methylcellulose. The homogeneous distribution of Ca2+ in the composite films was observed because of the high concentration of COO? groups along the PAA backbone for the complexation of Ca2+ ions. The optical transparency of the composites depends on the weight percentages of the three polymers and the molar concentration of CaCO3 in the composites. Maximum transparency was obtained for a composite film with a PAA/CaCO3 ratio of 9:1. The results indicated that methylcellulose improved the film‐forming capabilities and that PEG improved the transparency of the composites. All polymer complexes were characterized with X‐ray diffraction, fourier transfer infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, dynamic mechanical analysis, and optical transparency measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4459–4465, 2004  相似文献   

4.
The addition of inorganic filler into commodity plastics has a long history. Today, polymer composites based on nanosized filler are popular among polymer scientists from academia and industries due to their ability to enhance a number of physical properties. In this work, we investigate the dispersion and reinforcing effect of alumina nanoparticles using a polystyrene-polybutadiene based block copolymer (SBS) and organically modified alumina nanofiller. With the aid of solution casting procedures, polymer composites with good dispersion of nanoparticles could be produced. It has been demonstrated that with suitably coated nanoparticles, polymer composites with optimum dispersion of nanofiller ensuring marked reinforcement effect can be achieved.  相似文献   

5.
 The frequency and concentration dependences of the storage modulus (G ) for carbon black and short-carbon-fiber-filled polymer composites were investigated by means of dynamic rheological measurements. It was found that G at low frequencies and amplitudes could be used as a sensitive experimental parameter for detecting the flocculation structure of the ultra-fine-particle-filled polymer composites. Correlation of electrical resistivity of the composites to the relative storage modulus, G r(=G c/ G p), revealed that the three-dimensional interparticle networks start to construct through the matrix when G r increases to 7 regardless of the composite systems. Quantitative calculations in order to determine the flocculation structure were carried out by means of the modified Kerner equation. A plot of the calculated value, defined as the floc index A, dependence of electrical resistivity for various systems was found to be a universal curve. Accordingly, we suggest that A might universally correspond to the flocculation structure of the filler, which is independent of the nature of the filler, the molecular weight, the chemical composition of the polymer and the temperature at which the measurement is made. This method is particularly effective for estimating the flocculation structure of ultra-fine-particle-filled polymer composites no matter whether the filler is conductive or not. Received: 26 May 1999/Accepted in revised form: 28 September 1999  相似文献   

6.
Composite polymer electrolyte films comprising polyethylene oxide (PEO) as the polymer host, LiClO4 as the dopant, and NiO nanoparticle as the inorganic filler was prepared by solution casting technique. NiO inorganic filler was synthesized via sol-gel method. The effect of NiO filler on the ionic conductivity, structure, and morphology of PEO-LiClO4-based composite polymer electrolyte was investigated by AC impedance spectroscopy, X-ray diffraction, and scanning electron microscopy, respectively. It was observed that the conductivity of the electrolyte increases with NiO concentration. The highest room temperature conductivity of the electrolyte was 7.4?×?10?4 S cm?1 at 10 wt.% NiO. The observation on structure shows the highest conductivity appears in amorphous phase. This result has been supported by surface morphology analysis showing that the NiO filler are well distributed in the samples. As a conclusion, the addition of NiO nanofiller improves the conductivity of PEO-LiClO4 composite polymer electrolyte.  相似文献   

7.
Nanosized calcium carbonate (nano-CaCO3) filled polycaprolactone (PCL) bio-composites were prepared by using a twin-screw extruder. The melt flow behavior of the composites, including the entry pressure drop, melt shear flow curves and melt shear viscosity, were measured through a capillary rheometer operated in a temperature range of 170∼200 °C and shear rates varying from 50 to 103 s−1. The entry pressure drop showed a non-linear increase with increasing shear stress when the filler weight fraction was less than 3%, while it decreased slightly with an increase of shear stress at a filler weight fraction of 4%. The melt shear flow roughly followed a power law, while the effect of temperature on the melt shear viscosity was estimated by using the Arrhenius equation. Moreover, the influence of the nano-CaCO3 on the melt shear viscosity of the PCL composite was not significant at low filler levels.  相似文献   

8.
The strength of interaction between tin phosphate glass (PGlass) filler droplets and an ethylene‐vinyl alcohol (EVOH) matrix were investigated by image, thermal, and rheological analysis. 10% PGlass droplets in EVOH were smaller than those previously observed in maleated polypropylene. Analysis using the Fox equation showed that EVOH/97 °C Tg PGlass composites are not miscible systems. Dynamic shear and extensional rheology data of those composites exhibited a weak physical network, with relaxation times longer than that of pure EVOH at all strain rates. The tensile properties of the EVOH/10 vol % PGlass composite showed it to be more ductile and flexible than a typical polymer/inorganic filler system, supporting interaction between PGlass and EVOH sufficient to interrupt polymer–polymer hydrogen bonding. While undrawn EVOH/PGlass composite films showed increased oxygen gas permeability when compared to undrawn neat EVOH film, the drawn composite films exhibited oxygen permeability 6–7 times lower than that of neat EVOH, attributed to the presence of high aspect ratio PGlass particles after orientation. The concept of hydrogen bonding between polymer and PGlass can likely be applied to other polymers such as polyamides which possess numerous hydrogen bonding sites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 989–998  相似文献   

9.
Gel polymer composites electrolytes containing nano LiAlO2 as filler were prepared using a solution cast technique and characterized using different techniques such as X-ray diffraction (XRD), thermal analysis (TG, DSC), Fourier transform infra – red spectroscopy (FT-IR) and scanning electron microscope (SEM). X-ray diffraction analysis showed the effect of lithium tri fluoro methane sulphonate (LiCF3SO3), poly vinyl acetate (PVAc) and nano lithium aluminate (LiAlO2) on the crystalline structure of the poly vinylidene fluoride –co– hexa fluoro propylene (PVDF-co-HFP) matrix containing ethylene carbonate (EC) and diethyl carbonate (DEC) as plasticizers. FT-IR analysis confirmed both the good dissolution of the LiCF3SO3 salt and the good interaction of the nano LiAlO2 filler with the polymer matrix. TG analysis showed the good thermal stability of the LiAlO2 samples compared to the free one. Also, addition of nano LiAlO2 filler enhanced the conductivity value of the polymer composites electrolytes. The sample containing 2 wt% of LiAlO2 showed the highest conductivity value, 4.98 × 10−3 Ω −1 cm−1 at room temperature, with good thermal stability behavior (Td = 362 °C). This good conductive and thermally stable polymer nano composite electrolyte was evaluated as a promising membrane for lithium ion batteries application.  相似文献   

10.
Biodegradable trifunctional oligomer was synthesized from polycaprolactone and glutamic acid and characterized by Fourier‐transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopies. Injectable and in situ crosslinkable polymer networks were fabricated by the copolymerization of oligomer with triethylene glycol dimethacrylate (TEGDMA) and used to evaluate the initial compressive strengths, viscosities, shrinkages, thermal stabilities, and biodegradabilities in the forms of polymer network neat resin and their composites with β‐tricalcium phosphate. The initial compressive strengths (CS) values of neat resins ranged from 9.54 to 187.6 MPa. Both neat resins and composites had polymerization shrinkage ranging from 0% to 11.7%, which increased with increasing of TEGDMA contents in resin. Moreover, in polymer composite resins, shrinkage values decreased with increasing filler level from 0% to 4.6%, and exothermic evolution values decreased from 33.5°C to 29.7°C as increasing filler level. The composite with the formulation of (polycaprolactone)‐glutamate triacrylate (PCLGTA)/TEGDMA (25/75) and powder/liquid (P/L) ratio of 1.0 exhibited the highest exothermal and lowest shrinkage values. The increase of oligomer in the formulation led to an increase in viscosity.  相似文献   

11.
Polymer composites with inorganic fillers of different nature, concentration, particle size and shape were studied by optical spectroscopy (UV, visible, and IR ranges), optical and electron microscopy, and dynamic light scattering. An experiment to determine the size of the filler particles in aqueous suspension in the polymer matrix of a composite and directly in powders was conducted. It was shown that with increasing concentration aggregation of particles on drying an aqueous slurry occurs to a greater extent than for the filler in the polymer composite. It was demonstrated by examples that the optical spectroscopy can be successfully used for the analysis of sub-micron and micron sized filler particles in a polymer matrix or suspension.  相似文献   

12.
The extrudate swell ratios of polypropylene (PP) composite melts filled with graphene nano-platelets (GNPs) were measured using a capillary rheometer within a temperature range of 180–230 °C and apparent shear rate varying from 100 to 4000 s−1 in order to identify the effects of the filler content and test conditions on the melt die-swell behavior. It was found that the values of the extrudate swell ratio of the composites increased with increasing apparent shear rate, with the correlation between them obeying a power law relationship, while the values of the extrudate swell ratio decreased almost linearly with rise in temperature. The values of the melt extrudate swell ratio increased approximately linearly with increasing shear stress, and decreased roughly linearly with an increase of the GNP weight fraction. In addition, the extrudate swell mechanisms are discussed from the observation of the fracture surface of the extrudate using scanning electronic microscopy. This study provides a basis for further development of graphene reinforced polymer composites with desirable mechanical performance and good damage resistance.  相似文献   

13.
Ceramic fast-ion conductors have high ionic conductivities (>10?4 S cm?1) but are difficult to process and have poor chemo/mechanical properties at the electrode/electrolyte interfaces. In contrast, polymer electrolytes are pliable and easy to process but suffer from low room-temperature ionic conductivities (≈10?6-10?7 S cm?1). Combining these two elements to form a composite polymer electrolyte is a promising way to enable all-solid-state lithium-metal batteries. The choice of ceramic filler and polymer can be tailored to provide synergistic benefits that overcome the practical shortcomings of the two components. Herein, the fundamentals of Li+ conduction through the various phases and interfaces in these materials are discussed as well as the important parameters, beyond the initial choice of polymer and ceramic filler materials that must be considered while designing composite polymer electrolytes. Emphasis is placed on the particle filler engineering and practical fabrication methods as routes toward enhancing the properties of these composites.  相似文献   

14.
In this study, the effect of addition Calcium carbonate (CaCO3) filler component on solid state thermal decomposition procedures of Polypropylene-Low Density Polyethylene (PP-LDPE; 90/10 wt%) blends involving different amounts (5, 10, 20 wt%) Calcium carbonate (CaCO3) was investigated using thermogravimetry in dynamic nitrogen atmosphere at different heating rates. An integral composite procedure involving the integral iso-conversional methods such as the Tang (TM), the Kissinger-Akahira-Sunose method (KAS), the Flynn-Wall-Ozawa (FWO), an integral method such as Coats-Redfern (CR) and master plots method were employed to determine the kinetic model and kinetic parameters of the decomposition processes under non-isothermal conditions. The Iso-conversional methods indicated that the thermal decomposition reaction should conform to single reaction model. The results of the integral composite procedures of TG data at various heating rates suggested that thermal processes of PP-LDPE-CaCO3 composites involving different amounts of CaCO3 filler component (5, 10, 20 wt%) followed a single step with approximate activation energies of 226.7, 248.9, and 252.0 kJ.mol? 1 according to the FWO method, respectively and those of 231.3, 240.1 and 243.0 kJ mol? 1 at 5°C min? 1 according to the Coats-Redfern method, the reaction mechanisms of all the composites was described from the master plots methods and are Pn model for composite C-1, Rn model for composites C-2 and C-3, respectively. It was found that the thermal stability, activation energy and thermal decomposition process changed by the increasing CaCO3 filler weight in composite structure.  相似文献   

15.
The electrical conductivity and impact strength of polypropylene(PP)/EPDM/carbon black ternary composites were investigated in this paper. Two processing methods were employed to prepare these ternary composites. One was called one‐step processing method, in which the elastomer and the filler directly melt blended with PP matrix. Another one was called two‐step processing method, in which the elastomer and the filler were mixed first, and then melt blended with pure PP. To get an optimal phase morphology that favors the electrical conductivity and impact strength, controlling the distribution of CB in PP/EPDM blend was a crucial factor. Thus the interfacial tension and the work of adhesion were first calculated based on the measurement of contact angle, and the results showed that CB tended to be accumulated around EPDM phases to form filler‐network structure. Expectably, the filler‐network structure was observed in PP/EPDM/CB(80/20/3) composite prepared by two‐step processing method. The formation of this filler‐network structure decreased the percolation threshold of CB particles in polymer matrix, and the electrical conductivity as well as Izod impact strength of the composite increased dramatically. This work provided a new way to prepare polymer composites with both improved conductivity and impact strength. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The method of the synthesis of dispersed powders of silicon, titanium, and zirconium dioxides was developed, including formation of cellulose inorganic composites by impregnation of pressed granules of powdered cellulose with solutions of tetraethoxysilane and tetrabutoxy zirconium, hydrolysis of the organometallic constituent of the composite, pyrolysis of the cellulose matrix of the composite, and burning of its carbon constituent.  相似文献   

17.
Polymer composites with different concentrations of organometallics (ferric oxalate) dispersed PMMA were prepared. PMMA was synthesized by solution polymerization technique. These films were irradiated with 120 MeV Ni10+ ions in the fluence range 1011-5 × 1012 ions/cm2. The radiation induced modifications in dielectric properties, microhardness, structural changes and surface morphology of polymer composite films have been investigated at different concentrations of filler and ion-fluences. It was observed that electrical conductivity and hardness of the films increase with the concentration of the filler and also with the fluence. The dielectric constant (?) obeys the Universal law given by ?αfn−1. The dielectric constant/loss is observed to change significantly due to irradiation. This suggests that ion beam irradiation promotes the metal to polymer bonding and convert polymeric structure into hydrogen depleted carbon network. This makes the composites more conductive and harder. Surface morphology of the films has been studied using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The average surface roughness is observed to increase after irradiation as revealed by AFM studies. The SEM images show the blisters type of phenomenon on the surface due to ion beam irradiation.  相似文献   

18.
The effect of schungite filler with a carbon content of 39 wt % on the degree of crystallinity of polypropylene and polyethylene in mixed ternary composites is studied. The PP-to-PE volume ratios are 80: 20 and 50: 50. With an increase in the content of the schungite filler, the fraction of the crystalline phase in PP increases, although the degree of crystallinity of PE decreases; this behavior is related to the high affinity between polypropylene and schungite filler. The surface structure of the initial and schungite-loaded PP-PE materials of various compositions is studied via AFM. The surface structure of the above composites is shown to be different, and its specific features are dependent on the ratio between polymer components and on the order in which all components are introduced into the system.  相似文献   

19.
For organic-inorganic composite materials, the spatial dispersion of inorganic fillers in the organic matrix is of great significance for designing and manufacturing high-performance composite materials. To improve the understanding of the micro-physical mechanism of the filler-reinforced polymer matrix, we studied the relationship between filler network structure and macro-mechanical properties of silicone rubber by using fluorescent labeling technology and three-dimensional (3D) visualization imaging. The experimental results showed that a good filler network structure in the polymer matrix can more effectively dissipate external mechanical energy, which generate a visible mechanical strengthening effect. Additionally, this visualization method truly reflects the macrodispersion of the filler and the evolution of the filler network structure under dynamic stress due to its non-invasive and intuitive characteristics, which provides new theoretical guidance for the design of high-performance composites.  相似文献   

20.
Thermogravimetry was used to investigate the effects of different inorganic functional fillers on the heat resistance of polymer matrices. The kinetic parameters of thermal oxidative degradation were shown to depend on the polymer, the chemical composition of the filler surface, the filler concentration, and the processing method, which determines the distribution of filler particles in the polymer matrix. Magnetic fillers (carbonyl iron, and hexaferrites of different structural types) were shown to be chemically active fillers, increasing the heat resistance of siliconorganic polymers. Their stabilizing effect is due to blocking of the end silanol groups and macroradicals by the surface of the filler and non-chain inhibition of thermal oxidative degradation. In the case of fiber-forming polymers (UHMWPE, PVOH and PAN), most magnetic fillers are chemically inert, but at concentrations of 30–50 vol% they increase the heat resistance of the composite. Addition of carbon black increased the heat resistance of the thermoplastic matrix. The dependence of the thermal degradation onset temperature on the kaolin concentration in the polyolefin matrix exhibited a maximum. Analysis of the experimental results demonstrated the operating temperature ranges for different composites, and their maximum operating temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号