首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new generation of segmented thermoplastic poly(urethane-thiourea-imide)s (PUTIs) was synthesized via reaction of polyethylene glycol and thiourea-based prepolymer with dianhydride as chain extenders. NCO-terminated prepolymer was synthesized from a new diisocyanate, 3-(3-((4-isocyanatophenyl)carbamoyl)thioureido)phenyl-4-isocyanatophenylcarbamate (IPCT), as a hard segment and PEG forming soft segment. The starting materials and polymers were characterized by conventional methods and physical properties such as solubility, solution viscosity, molecular weight, thermal stability and thermal behavior were studied. PUTIs showed partially crystalline structures. Weight average molecular weights of PUTIs (GPC measurements) were in the range of 1,68,694-1,97,035. Moreover, thermogravimetric analysis indicated that poly(urethane-thiourea-imide)s were fairly stable above 500 °C having T10 of 521-543 °C. Investigation of the results authenticated the approach of introducing thiourea (using IPCT) and imide structure in polyurethanes for the improvement of thermal stability. In comparison to typical polyurethanes, these polymers exhibited better heat resistance, chemical resistance as well as processability.  相似文献   

2.
Various new thermoplastic segmented polyurethanes were synthesized by a one-step melt polymerization from aliphatic-aromatic α,ω-diols containing sulfur in the aliphatic chain, including 4,4′-(ethane-1,2-diyl)bis(benzenethioethanol), 4,4′-(ethane-1,2-diyl)bis(benzenethiopropanol) and 4,4′-(ethane-1,2-diyl)bis(benzenethiodecanol) as chain extenders, hexane-1,6-diyl diisocyanate (HDI) or 4,4′-diphenylmethane diisocyanate (MDI) and 20-80 mol% poly(oxytetramethylene)diol (PTMO) with molecular weight of 1000 g/mol as a soft segment. The reaction was conducted at the molar ratio of NCO/OH = 1 and 1.05, and in the case of the HDI-based polyurethanes in the presence of dibutyltin dilaurate as a catalyst. The effect of the diisocyanate used on the structure and some physicochemical, thermal and mechanical properties of the segmented polyurethanes were studied. The structures of these polyurethanes were examined by FTIR and X-ray diffraction analysis. The thermal properties were investigated by differential scanning calorimetry and thermogravimetric analysis. Shore hardness and tensile properties were also determined. All the synthesized polymers showed partially crystalline structures. The MDI-based polyurethanes were products with lower crystallinity, higher glass-transition temperature (Tg) and better thermal stability in comparison with the HDI-based ones. The MDI series polymers also exhibited higher tensile strength (up to ∼36 MPa vs. ∼23 MPa) and elongation at break (up to ∼3900% vs. ∼900%), but lower hardness than the analogous HDI series polyurethanes. In both series of the polymers an increase in PTMO soft-segment content was associated with decreased crystallinity, Tg, hardness and tensile strength. An increase in PTMO content also involved an increase in elongation at break.  相似文献   

3.
An easy method for grafting of poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate) (PHOU) was developed. Oxidation of the pendant double bonds of PHOU into carboxyl groups to yield poly(3-hydroxyoctanoate-co-3-hydroxy-9-carboxydecanoate) (PHOD) and the esterification of the carboxyl side groups with poly(ethylene glycol) (PEG) were carried out in a single reaction solution. The grafting yield is dependent on the molar mass of the PEG graft. The maximum carboxyl group conversion (52%) was obtained with PEG Mn = 350 and decreased with increasing molar mass of PEG (19% for PEG Mn = 2000). Yields were determined by 1H and 13C NMR. Short PEG grafts lowered the glass transition temperature (PHOD-g-PEG 350 −57 °C) compared to PHOD (−19 °C) and PHOU (−39 °C). This effect depends on the COOH conversion and PEG chain length. Grafting enhanced the hydrophilic character of the modified polymers making them soluble in polar solvents, such as alcohols and water/acetone mixtures. PHOD-g-PEG films were more stable towards hydrolytic degradation as PHOD films. No obvious modification of films was observed after more than 200 days at pH 7.2 and 37 °C. The molar mass of the grafted polymers decreased only slightly during this period, while PHOD films were hydrolyzed into soluble fragments.  相似文献   

4.
New aliphatic-aromatic and fully aromatic phosphonate polyamides were prepared by polycondensation reaction of our synthesized aromatic diamine: tetraethyl[(2,5-diamino-3,6-dimethylbenzene-1,4-diyl)dimethanediyl]bis(phosphonate) with the specific di-acylchloride (adipoyl chloride, isophthaloyl chloride and terephthaloyl chloride). The chemical structure of all samples were characterized by (1H and 31P) NMR, MALDI-TOF MS, FT-IR tools, whereas their thermal properties were determined by DSC and TGA techniques. The phosponate polyadipamide (referred as PAP) is a semi-crystalline sample with a melting temperature at about 261 °C and glass transition (Tg) of 71 °C. All polymers show two thermal degradation steps in the temperature range 270-550 °C. Each polymer, independently its structure, shows the first maximum rate of thermal decomposition temperature (PDT) around 300-310 °C, which may be due to thermal degradation of phoshonate groups. MALDI-TOF spectra, beside the linear oligomers terminated with the specific groups expected in accord to the synthesis procedure, reveals the presence of cyclic oligomers in the polyadipamide and polyisophthalamide samples.  相似文献   

5.
A series of novel fluorinated poly(ether imide)s (IV) having inherent viscosities of 0.70-1.08 dL/g were prepared from 1,1-bis[4-(3,4-dicarboxyphenoxy)phenyl]cyclohexane dianhydride (I) and various trifluoromethyl (CF3)-substituted aromatic bis(ether amine)s IIa-g by a standard two-step process with thermal and chemical imidization of poly(amic acid) precursors. These poly(ether imide)s showed excellent solubility in many organic solvents and could be solution-cast into transparent, flexible, and tough films. These films were essentially colorless, with an ultraviolet-visible absorption edge of 375-380 nm and a very low b value (a yellowness index) of 5.5-7.3. They also showed good thermal stability with glass-transition temperatures of 207-269 °C, 10% weight loss temperatures in excess of 474 °C, and char yields at 800 °C in nitrogen more than 62%. In comparison with analogous V series poly(ether imide)s without the -CF3 substituents, the IV series polymers showed better solubility, lower color intensity, and lower dielectric constants.  相似文献   

6.
3,4-Di-(2′-hydroxyethoxy)benzylidenemalononitrile (3) was prepared and condensed with terephthaloyl chloride and adipoyl chloride to yield novel Y-type polyesters (4-5) containing 3,4-dioxybenzylidenemalononitrile groups as NLO-chromophores, which constituted parts of the polymer main-chains. The resulting polymers 4-5 are soluble in common organic solvents such as acetone and N,N-dimethylformamide. They showed thermal stability up to 300 °C in thermogravimetric analysis with glass-transition temperatures obtained from differential scanning calorimetry in the range 89-91 °C. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at the 1064 nm fundamental wavelength were around 2.47 pm/V. The dipole alignment exhibited high thermal stability even at 10 °C higher than Tg, and there is no SHG decay below 100 °C due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.  相似文献   

7.
A series of isomeric bis(chlorophthalimide)s (BCPIs) were conveniently prepared from 3-chlorophthalic anhydride, 4-chlorophthalic anhydride, and mixtures thereof. Polymerization of BCPIs with bis(4-mercaptophenyl) sulfone (BMPS) proceeded smoothly in the presence of tributylamine, from which a class of isomeric poly(thioether ether sulfone imide)s (PTESIs) with inherent viscosities of 0.45-0.82 dL/g were obtained. The solubility, thermal stability, and mechanical properties of these polymers were characterized. Compared to the PTESIs derived from single BCPIs, i.e., 3,3′-, 3,4′-, or 4,4′-BCPIs, the PTESIs derived from mixed BCPIs showed better solubility and higher storage modulus. These PTESIs also demonstrated good thermal stability, giving only 5% weight loss at temperature of 490 °C in nitrogen atmosphere. The glass transition temperatures (Tgs) of these isomeric PTESIs were between 242 and 265 °C, and were increased with increasing of the ratio of 3-chlorophthalimide unit in the polymer backbone.  相似文献   

8.
Two new diacid monomers, 2,2′-sulfide bis(4-methyl phenoxy acetic acid) and 2,2′-sulfoxide bis(4-methyl phenoxy acetic acid) were successfully synthesized by refluxing the 2,2′-sulfide bis(4-methyl phenol) and 2,2′-sulfoxide bis(4-methyl phenol) with chloroacetonitrile in the presence of potassium carbonate, and subsequent basic reduction. Two novel series of poly(sulfide-ether-amide)s and poly(sulfoxide-ether-amide)s with aliphatic units in the main chain were prepared from diacids with various diamines.The polyamides were obtained in quantitative yields and their inherent viscosities were in the range of 0.43-0.89 dl g−1 at a concentration of 0.5 g dl−1 in N,N-dimethylacetamide (DMAc) solvent at 25 °C. They showed good thermal stability. The temperature for 10% weight loss in argon atmosphere was in the range of 350-415 °C. The polymers showed glass transition temperatures between 228 and 261 °C. Almost all of the polyamides were readily soluble in a variety of polar solvents such as N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO).  相似文献   

9.
This study describes the miscibility phase behavior in two series of biodegradable triblock copolymers, poly(l-lactide)-block-poly(ethylene glycol)-block-poly(l-lactide) (PLLA-PEG-PLLA), prepared from two di-hydroxy-terminated PEG prepolymers (Mn = 4000 or 600 g mol−1) with different lengths of poly(l-lactide) segments (polymerization degree, DP = 1.2-145.6). The prepared block copolymers presented wide range of molecular weights (800-25,000 g mol−1) and compositions (16-80 wt.% of PEG). The copolymer multiphases coexistance and interaction were evaluated by DSC and TGA. The copolymers presented a dual stage thermal degradation and decreased thermal stability compared to PEG homopolymers. In addition, DSC analyses allowed the observation of multiphase separation; the melting temperature, Tm, of PLLA and PEG phases depended on the relative segment lengths and the only observed glass transition temperature (Tg) in copolymers indicated miscibility in the amorphous phase.  相似文献   

10.
Syntheses of segmented copoly(ether-ester)s with (oxy-2-methyl-1,4-phenyleneoxycarbonyl-1,4-phenylene carbonyl)/(oxy-2-chloro-1,4-phenyleneoxycarbonyl-1,4-phenylene carbonyl) (methyl-/chloro-substituted) hard segments and poly(oxytetramethylene) soft segments, are reported. The methodology consisted of staged addition melt condensation of terephthaloyl chloride, poly(oxytetramethylene)glycol (POTMG; \[ \bar M_n \] = 250, 650, 1000, 2000) and methyl-/chloro-hydroquinone. Lengths of hard and soft segments were varied while the weight ratio of hard to soft segment was maintained constant. Copolymers were characterised for solubility behavior, and by infrared spectroscopy, x-ray diffraction, DSC, and polarizing microscopy. Thermal properties were found to be dependent on length of soft segment as well as on the type of substituent in the mesogenic core. In both methyl- as well as chloro-substituted copoly(ether-ester)s soft segment glass transition temperature (Tgs) was obtained between ?40 and ?50°C. All copoly(ether-ester)s are elastomeric at room temperature (25°C). These polymers exhibit thermotropic liquid crystalline behavior and were easily sheared and aligned in liquid crystalline state. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The amine-quinone monomer, 2,5–bis(N-2-hydroxyethyl-N-methylamino)-1,4-benzoqui-none (AQM-1), was prepared by the multiple-step condensation of 2-(N-methylam-ino)ethanol with benzoquinone in the presence of oxygen. This crystalline monomer was used to prepare a series of amine-quinone polyurethanes by condensation polymerization, either in the melt or in solution (THF or DMF), with a diisocyanate (MDI, TDI, or IPDI) and an oligomeric diol [poly(caprolactone) or poly(1,2-butylene glycol)]. The amine-quinone functional group was stable under the polymerization conditions, and was incorporated into the main chain, giving red-brown polyurethanes that had molecular weights in the range of 11,000–90,000 and were soluble in THF, MEK, DMF, and DMSO. The thermal properties were consistent with a two-phase morphology with an amorphous soft segment, containing the oligomeric diol, and a microcrystalline hard segment, containing AQM-1. The polymers having a low hard segment content (<50%) were rubbery (soft segment Tg <?25°C); polymers having a high hard segment content (>50%) were thermoplastic (hard segment Tg>150°C). © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Poly(ethylene terephthalate) copolymers (abbreviated as PETS) that contain bis[4-(2-hydroxyethoxy)phenyl]sulfone (BHEPS) were prepared from dimethyl terephthalate (DMT), ethylene glycol (EG) (5-95%) and BHEPS (5-95%). The compositions and microstructures of the copolyesters were determined by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, respectively. The thermal behaviors were studied over the entire range of copolymer compositions, using X-ray analysis, differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The molecular weights, optical characteristics and tensile properties of these polymers were also determined. Experimental results indicated that the copolymers had a random microstructure. The intrinsic viscosities of the copolymers ranged from 0.65 to 0.69 dL/g. The copolyesters with BHEPS of <10 mol% were crystallizable, whereas the copolyesters with BHEPS of ?10 mol% were amorphous. Incorporating BHEPS affected the glass-transition temperature (Tg) values of those polymers, from about 81 °C for PETS5 to 126 °C for PETS95. The optical transmissions exceeded 86% for λ = 400 nm for all of the amorphous polyesters. The tensile modulus and strength of the copolyesters increased with BHEPS. However, they also became brittle and their elongation at break decreased.  相似文献   

13.
Two new aromatic diamines containing preformed amide linkages, viz., N,N′-(4-pentadecyl-1,3-phenylene)bis(4-aminobenzamide) I and N,N′-(4-pentadecyl-1,3-phenylene)bis(3-aminobenzamide) II, were synthesized by reaction of 4-pentadecylbenzene-1,3-diamine with 4-nitrobenzoylchloride and 3-nitrobenzoylchloride, followed by reduction of the respective dinitro derivatives. A series of new poly(amideimide)s was synthesized by polycondensation of I and II with four commercially available aromatic dianhydrides, viz., pyromellitic dianhydride (PMDA), 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 4,4′-oxydiphthalic anhydride (ODPA), and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6-FDA) in N,N-dimethylacetamide (DMAc) employing conventional two step method via poly(amic acid) intermediate followed by thermal imidization. Reference poly(amideimide)s were synthesized by polycondensation of N,N′-(1,3-phenylene)bis(4-aminobenzamide) and N,N′-(1,3-phenylene)bis(3-aminobenzamide) with the same aromatic dianhydrides. Inherent viscosities of poly(amideimide)s containing pendent pentadecyl chains were in the range 0.37-1.23 dL/g in N,N-dimethylacetamide at 30 ± 0.1 °C indicating the formation of medium to high molecular weight polymers. The poly(amideimide)s containing pendent pentadecyl chains were found to be soluble in N,N-dimethylacetamide, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and pyridine and could be cast into transparent, flexible and tough films from their N,N-dimethylacetamide solution. Wide angle X-ray diffraction patterns exhibited broad halo indicating that the polymers were essentially amorphous in nature. X-ray diffractograms also displayed sharp reflection in the small angle region (2θ ≈ 3°) for poly(amideimide)s containing pentadecyl chains indicating the formation of layered structure arising from packing of flexible pentadecyl chains. The glass transition temperatures observed for reference poly(amideimide)s were in the range 331-275 °C and those for poly(amideimide)s containing pendent pentadecyl chains were in the range 185-286 °C indicating a large drop in Tg owing to the “internal plasticization” effect of pentadecyl chains. The temperature at 10% weight loss (T10), determined by TGA in nitrogen atmosphere, were in the range 460-480 °C indicating their good thermal stability.  相似文献   

14.
New polyesters having azomethine and phenylthiourea groups in the polymer backbone were synthesized by interfacial polycondensation method. The dihydroxy monomer N-(4-hydroxy-3-methoxybenzal) N′-(4′-hydroxyphenyl)thiourea was condensed with six diacid chlorides: terephthaloyl, isophthaloyl, azeloyl, suberoyl, pimeloyl and adipolyl chlorides. The resulting polyesters were characterized by viscosity, IR, NMR and TGA analysis. The wholly aromatic poly(azomethine ester) derived from terephthaloyl chloride when blended with polyaniline/NH4OH, polyaniline/HCl and pure polyaniline shows conductance in the range 3.2 × 10−3-0.91 × 10−1 S cm−1.  相似文献   

15.
Three series of poly(butylene terephthalate-co-succinate)-b-poly(ethylene glycol) segmented random copolymers with starting PEG number-average molecular weight (Mn(PEG)) at 600, 1000 and 2000, respectively, as well as hard segment poly(butylene succinate) (PBS) molar fraction (MPBS) increasing from 10% to 30% were synthesized through a transesterification/polycondensation process and characterized by means of GPC, NMR, DSC, WAXD and mechanical testing etc. The investigations were mainly focused on the influence of Mn(PEG) on the properties of resulting copolymers bearing two sorts of hard segments. It is revealed that all the samples show a relatively symmetrical GPC curves with the number-average molecular weight more than 4 × 104, while the polydispersity decreases from 1.9 to 1.4 as the increasing Mn(PEG) because of the prolonged time for polycondensation and the faster exclusion of small molecules by-product with the decreased molten viscosity. The sequence distribution analysis shows that the average sequence length of hard segment PBT decreases while that of PBS increases with the increasing MPBS and are independent of the soft segment length. The approximate unit degree of randomness as well as the soft segment length turns out that the segments take a statistically random distribution along the backbone. Micro-phase separation structure is verified for the appearance of two glass transition temperatures and two melting points, respectively, in DSC thermograms of most samples. The depression of melting points and the reduction of crystallinity of hard segments with increasing MPBS are related to the crystal lattice transition from α-PBT to PBS and discussed in the viewpoint of cohensive energy. Mechanical testing results demonstrate that the increase of amorphous domains the increase of MPBS as well as Mn(PEG) will provide high elongation and good flexibility of copolymer chain. The in vitro degradation experiments show that the partial substitution of aromatic segment PBT with aliphatic PBS will substantially accelerate the degradation rate with enhanced safety of degradation by-products and while changing Mn(PEG) broaden the spectrum to tailor the properties.  相似文献   

16.
Poly(1,3,4-oxadiazole-ether-imide)s were prepared by thermal imidization of poly(amic-acid) intermediates resulting from the solution polycondensation reaction of a bis(ether-anhydride), namely 2,2′-bis-[(3,4-dicarboxyphenoxy)phenyl]-1,4-phenylenediisopropylidene dianhydride, with different aromatic diamines containing 1,3,4-oxadiazole ring, such as 2,5-bis(p-aminophenyl)-1,3,4-oxadiazole, 2,5-bis[p-(4-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2-(4-dimethylaminophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole. Poly(1,3,4-oxadiazole-ether-imide)-polydimethylsiloxane copolymers were prepared by polycondensation reaction of the same bis(ether-anhydride) with equimolar quantities of an aromatic diamine having 1,3,4-oxadiazole ring and a bis(aminopropyl)polydimethylsiloxane oligomer of controlled molecular weight. A solution imidization procedure was used to convert quantitatively the poly(amic-acid) intermediates to the corresponding polyimides. All the polymers were easily soluble in polar organic solvents such as N-methylpyrrolidone and N,N-dimethylacetamide. The polymers showed good thermal stability with decomposition temperature being above 400 °C. Solutions of some polymers in N-methylpyrrolidone exhibited blue fluorescence, having maximum emission wavelength in the range of 370-412 nm.  相似文献   

17.
A new monomer, N,N′‐bis(4‐phenoxybenzoyl)‐p‐phenylenediamine (BPBPPD), was prepared by the condensation of p‐phenylenediamine with 4‐phenoxybenzoyl chloride in N,N‐dimethylacetamide (DMAc). Novel aromatic poly(ether amide amide ether ketone ketone)s (PEAAEKKs) were synthesized by electrophilic Friedel–Crafts solution copolycondensation of BPBPPD with a mixture of terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC), over a wide range of TPC/IPC molar ratios, in the presence of anhydrous aluminum chloride and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The influences of reaction conditions on the preparation of polymers were examined. The polymers obtained were characterized by different physico–chemical techniques such as FT‐IR, Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and wide angle X‐ray diffraction (WAXD). The polymers with 70–100 mol% IPC are semicrystalline and have remarkably increased Tgs over commercially available poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK) due to the incorporation of amide groups in the main chain. The polymers with 70–80 mol% IPC had not only high Tgs of 209–213°C, but also moderate Tms of 339–348°C, which are suitable for melt processing. The polymers with 70–80 mol% IPC had tensile strengths of 107.5–109.8 MPa, Young's moduli of 2.53–2.69 GPa, and elongations at break of 9–11% and exhibited high thermal stability and good resistance to organic solvents. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Three novel series of soluble and curable phthalonitrile-terminated oligomeric poly(ether imide)s containing phthalazinone moiety were synthesized from an excess amount of three dianhydrides and phthalazinone-based diamine, followed by reacting with 4-(3-aminophenoxy)phthalonitrile (APPh) in a two-step, one-pot reaction, respectively. The phthalonitrile oligomers containing phthalazinone moiety were cured in the presence of 4,4′-diaminodiphenylsulfone (DDS). The oligomers and the crosslinked polymers were characterized by DSC, FT-IR and elemental analysis. These phthalonitrile oligomers containing phthalazinone groups were found to be soluble in some aprotic solvents, such as chloroform, pyridine, m-cresol and N-methyl-2-pyrrolidone (NMP). The crosslinked polymers were insoluble in all solvents. The thermal properties of the oligomers and the crosslinked polymers were evaluated using DSC and TGA analysis. The phthalonitrile oligomers showed high glass transition temperatures (Tgs) in the range of 214-256 °C and high decomposition temperatures with 10% weight loss (Td10%) ranging from 523 to 553 °C. The crosslinked polymers showed excellent thermal stability with the 10% weight loss temperatures ranging from 543 to 595 °C, but did not exhibit a glass transition temperature upon heating to 350 °C.  相似文献   

19.
Radical polymerizations of α-allyloxymethylstyrene (1) and copolymerizations of α-(2-phenylallyloxy)methylstyrene (2) were undertaken to acquire comprehensive understanding on polymerization behavior of these dienes and to get polymers with high thermal stability and high glass transition temperature (Tg). One of the monofunctional counterparts of 1 is a derivative of α-methylstyrene, the ceiling temperature of which is low, and the other is an allyl compound that is well-known for the low homopolymerization tendency. This means that the intermolecular propagation reactions leading to pendant uncyclized units are suppressed during the polymerization of 1 to yield highly cyclized polymers. In fact, the degree of cyclization of poly(1) obtained at 140 °C attained the value 92%. Structural studies revealed that repeat cyclic units of poly(1) consist exclusively of five-membered rings. Poly(1) was found to be stable up to 300 °C, but its Tg values were detected at around 100 °C. They are considerably lower than the targeted values which should lie between 180 and 220 °C. An additional drawback of poly(1) is its low molecular weight probably due to a degradative chain transfer. For this reason, copolymerizations of 2 with 1 and with styrene were also carried out to seek for the possibility to control the thermal properties precisely. Monomer 2 was chosen, since it has been reported in our previous work that it yields polymers with thermal stability up to 300 °C and Tg higher than 250 °C. Copolymerization of 2 with styrene afforded polymers with desired thermal properties and high molecular weight.  相似文献   

20.
Novel poly(arylene thioether)s were synthesised using the one pot polymerisation method from the bis(N,N-dimethyl-S-carbamate) of 2,2-bis(4-mercaptophenyl)propane and activated difluoro aromatic compounds. Each of the polymers, obtained in good yields and with fairly high molecular weights, were characterised by IR, GPC and NMR analyses. In particular, the NMR characterisation was performed using 1H NMR, 13C NMR, DEPT, 2D COSY and 2D HSQC experiments. To study the effect on the thermal properties of replacing the ethereal oxygen atoms with sulfur atoms, we have synthesised the counterparts, the poly(arylene ether)s, with similar molecular weights. We observed that the substitution of the ethereal oxygen atoms with sulfur atoms results in a slightly lower thermal stability for the poly(thioether ketone)s, both under nitrogen and in air, and does not modify the Tg values. For the poly(thioether sulfone), on the other hand, the thermal stability is equal to that of the poly(ether sulfone), while the Tg is 10 °C lower. Furthermore, each sample is completely amorphous, with the exception of one of the poly(thioether ketone)s (sample 1b), which shows the capacity to crystallise, even if with a very slow crystallisation kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号