首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To increase the thermal and mechanical properties of poly(l-lactic acid) (PLA), a nontoxic biomesogen PFBH derived from ferulic acid (FA), 4-hydroxybenzoic acid (HBA) and 1,6-hexanediol (HD) was introduced into the PLA backbones by solution polymerization of PLA, PFBH and chain linker hexamethylene diisocyanate (HDI). The content of PFBH was varied from 0 to 30 mol% so that the effects of the biomesogen content on the thermal and physical properties, morphological textures and enzymatic degradation were examined, respectively. The synthesized materials were characterized by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (WAXD), polarizing light microscopy (PLM) and mechanical property measurements. It was found that introducing biomesogenic units could increase the thermal stability and reinforce the elastic properties, while reduced the melting temperature, the degree of crystallinity and the enzymatic degradation rate. The nontoxicity and biocompatibility of degradation would make the products promising candidates for medical applications in the area of tissue engineering.  相似文献   

2.
Polylactide (PLA)-montmorillonite (MMT) micro- and nanocomposites based on semicrystalline and amorphous polymers and unmodified or organomodified clays at 5 wt% content were produced by melt mixing. Based on the three different test methods that were used to follow thermal degradation, different conclusions were obtained. During melt processing, thermomechanical degradation was more pronounced in the presence of all fillers, which apparently acted catalytically, but to different degrees. During isothermal degradation in air from 180 °C to 200 °C, degradation rate constants were calculated from novel equations incorporating changes in intrinsic viscosity (IV). Results show that the thermal degradation rate constants of the amorphous PLA and its composites are lower than those of the semicrystalline PLA and its composites. Due to better filler dispersion in the polymer matrix, the thermal degradation rate constants of the nanocomposites are significantly lower than those of the unfilled polymers and their microcomposites under air. As per dynamic TGA data and thermal kinetic analysis from weight losses and activation energy calculations, organomodified nanofillers have a complex effect on the polymer thermal stability; the unmodified fillers, however, reduce polymer thermal stability. These TGA data and kinetic analysis results also support the findings that the thermal stability of the amorphous PLA and its composites is higher than that of the semicrystalline polymer and its composites and the thermal stability of the nanocomposites is higher than that of the microcomposites. In general, mathematical modeling based on random thermal scission equations was satisfactory for fitting the TGA experimental data.  相似文献   

3.
The tensile strength and thermal stability of polylactide (PLA) were significantly improved through chemical crosslinking. However, it became much more rigid and brittle. To obtain a material with good thermal stability and enhanced ability to plastic deformation, chemical crosslinked PLA with 0.5 wt % triallyl isocyanurate and 0.5 wt % dicumyl peroxide was blended with different contents of dioctyl phthalate (DOP). The advantage of using DOP is that it does not crystallize, has low glass transition temperature, and is miscible with PLA. The morphology and the thermal and mechanical properties of the crosslinked PLA and the blends of crosslinked PLA with various contents of DOP were investigated by means of scanning electron microscope, differential scanning calorimetry, tensile test, and dynamic mechanical analysis. The rheological properties of samples were also explored by using a capillary rheometer. The results showed that the DOP was an effective plasticizer for the chemical crosslinked PLA, resulting in a significantly decreased Tg, lower yield stress, and improved elongation at break. The plasticization effect was enhanced by adding higher DOP content. In addition, the DOP enhanced the crystallinity of crosslinked PLA, and all the crosslinked samples showed better heat stability than neat PLA. The apparent viscosity of the blends decreased with the increase of DOP content and a phase separation occurred when the content of DOP exceeded 12.5 wt %. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1136–1145, 2009  相似文献   

4.
Thermal properties of polylactic acid (PLA) filled with Fe-modified cellulose long fibers (CLF) and microcrystalline cellulose (MCC) were studied using thermo gravimetric analysis (TG), differential scanning calorimetry, and dynamic mechanical analysis (DMA). The Fe-modified CLFs and MCCs were compared with unmodified samples to study the effect of modification with Fe on electrical conductivity. Results from TG showed that the degradation temperature was higher for all composites when compared to the pure PLA and that the PLA composites filled with unmodified celluloses resulted in the best thermal stability. No comparable difference was found in glass transition temperature (T g) and melting temperature (T m) between pure PLA and Fe-modified and unmodified CLF- and MCC-based PLA biocomposites. DMA results showed that the storage modulus in glassy state was increased for the biocomposites when compared to pure PLA. The results obtained from a femtostat showed that electrical conductivity of Fe-modified CLF and MCC samples were higher than that of unmodified samples, thus indicating that the prepared biocomposites have potential uses where conductive biopolymers are needed. These modified fibers can also be tailored for fiber orientation in a matrix when subjected to a magnetic field.  相似文献   

5.
Composite fibers composed of poly(l-lactide)-grafted hydroxyapatite (PLA-g-HAP) nanoparticles and polylactide (PLA) matrix were prepared by electro-spinning. Environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the composite fibers and the distribution of PLA-g-HAP nanoparticles in the fibers, respectively. At a low content (∼4 wt%) of PLA-g-HAP, the nanoparticles dispersed uniformly in the fibers and the composite fibrous mats exhibited higher strength properties, compared with the pristine PLA fiber mats and the simple hydroxyapatite/PLA blend fiber mats. But when the content of PLA-g-HAP further increased, the nanoparticles began to aggregate, which resulted in the deterioration of the mechanical properties of the composite fiber mats. The degradation behaviors of the composite fiber mats were closely related to the content of PLA-g-HAP. At a low PLA-g-HAP content, degradation may be delayed due to the reduction of autocatalytic degradation of PLA. When PLA-g-HAP content was high, degradation rate increased because of the enhanced wettability of the composite fibers and the escape of the nanoparticles from fiber surfaces during incubation.  相似文献   

6.
A new phosphorus‐based organic additive (PDA) was designed and successfully synthesized using a three‐component reaction for improvement of the thermal and combustion resistance of polylactic acid (PLA). For compensate for mechanical properties of PLA, hydroxyapatite nanoparticles was modified via in situ surface modification with PDA and was used for preparation of PLA nanocomposites. The structure and morphology as well as thermal, combustion, and mechanical properties of the all PLA systems were investigated. The X‐ray diffraction (XRD) and field‐emission scanning electron microscopy (FE‐SEM) results indicated that the presence of PDA as surface modifier has been necessary for a desirable dispersion of hydroxyapatite (HA) nanoparticles in the PLA matrix. The thermal, combustion, and mechanical properties of the PLA system films were investigated using thermogravimetric analysis (TGA), microscale combustion calorimeter (MCC), and tensile test, respectively. The initial decomposition temperature and char residue of PLA containing 6 mass% of PDA along with 2 mass% HA nanoparticles were increased 20°C and 12% respectively, compared with that of the neat PLA. The peak of heat release rate was decreased from 566 W/g for the neat PLA to 412 W/g for PLA containing 2 mass% of PDA along with 6 mass% HA nanoparticles. By incorporation of only 2 mass% HA nanoparticles and 6 mass% of PDA, the tensile strength was obtained 51 MPa higher than that of the neat PLA.  相似文献   

7.
The research focused on enhancing the mechanical properties and thermal stability of bio-composites with natural flours and improving the interfacial adhesion between biodegradable polymer and flour. The tensile and flexural strength of the PLA bio-composites decreased with increasing flour addition. However, a 3% loading of the compatibilizer in the PLA bio-composite increased this strength up to that observed with the 10% loading flour. The degradation temperature of PLA was decreased by the flour but destarched cassava flour had higher thermal stability on account of its higher lignin content than pineapple flour. This means that the PLA bio-composites with destarched cassava flour had higher thermal stability than those with the pineapple flour. In addition, the thermal degradation temperature was increased by adding MAPLA. The compatibilizer improved the crystallinity of PLA, which enhanced the mechanical strength of the PLA bio-composites. As the pineapple flour and destarched cassava flour 30% loading was increased, the HDT of the PLA bio-composites increased from 56.8?°C to ~66.3 and 69.7?°C, respectively. The thermal aging test showed no reduction in strength of the neat PLA. However, the PLA bio-composites showed a gradual decrease in tensile strength with increasing number of cycles. Moreover, the shrinkage ratio of the neat PLA was 5% of that found with the PLA resin.  相似文献   

8.
In this study, the biodegradable poly(lactic acid) (PLA)/montmorillonite (MMT) nanocomposites were successfully prepared by the solution mixing process of PLA polymer with organically-modified montmorillonite (m-MMT), which was first treated by n-hexadecyl trimethyl-ammonium bromide (CTAB) cations and then modified by biocompatible/biodegradable chitosan to improve the chemical similarity between the PLA and m-MMT. Both X-ray diffraction data and transmission electron microscopy images of PLA/m-MMT nanocomposites indicate that most of the swellable silicate layers were disorderedly intercalated into the PLA matrix. Mechanical properties and thermal stability of the PLA/m-MMT nanocomposites performed by dynamic mechanical analysis and thermogravimetric analysis have significant improvements in the storage modulus and 50% loss in temperature when compared to that of neat PLA matrix. The degradation rates of PLA/m-MMT nanocomposites are also discussed in this study.  相似文献   

9.
Biodegradable PLA composites were prepared using microcrystalline cellulose (MCC) and silver (Ag) nanoparticles. The main objective of the present study is to develop new biopolymer composites with good mechanical properties, thermal stability, maintaining the optical transparency and also providing antimicrobial properties through silver nanoparticle introduction. Composites were prepared with 1%wt of Ag nanoparticles and 5%wt of MCC using a twin-screw microextruder; film parameters were optimized in order to obtain a thickness range between 20 and 60 μm.PLA composites maintained optical transparency properties of the matrix, while MCC was able to reduce polymer permeability. Thermal analysis revealed that MCC increased PLA crystallinity and the mechanical properties of the composites demonstrated that tensile modulus was improved by microcrystalline cellulose.  相似文献   

10.
Crosslinked materials derived from poly(lactide) (PLA) have been produced by radiation modification in the presence of a suitable crosslinker (triallyl isocyanurate) (TAIC). The crosslinking structure introduced in PLA films has not only much improved the heat stability but also their mechanical properties. The properties of crosslinked samples are governed by crosslinking density and these improvement seemed to increase with radiation dose. This implied that the three dimensional networks have been introduced in material by radiation and the crosslinking density depended on the structure and length of PLA chains. Biodegradability of PLA was also determined by an enzymatic degradation test and burying in compost at 55 °C. Differing with PLLA, PDLA was insignificantly degraded by proteinase K. The degradation rate of PLA in compost was postponed with the introduction of crosslinks.  相似文献   

11.
A novel nucleating agent, amidated potassium hydrogen phthalate intercalated layered double hydroxides (AP‐LDHs) were prepared using an amidation reaction. Through the structural characterization, it was found that AP‐LDHs had been successfully prepared. Meanwhile, the antibacterial activity of AP‐LDHs was studied. In order to improve the performance of poly (lactic acid) (PLA), PLA/AP‐LDHs nanocomposites were prepared by melt blending. Morphological analysis showed that PLA nanocomposites had an exfoliated structure. Mechanical properties test showed that the mechanical properties of PLA nanocomposites were enhanced. And the fracture scanning electron microscope analysis indicated that the PLA/AP‐LDHs nanocomposites exhibited ductile fracture characteristics. Moreover, differential scanning calorimetry and polarized optical microscopy analysis results demonstrated that the crystallization rate, nucleation density, and crystallinity of PLA/AP‐LDHs were improved. Thermogravimetric analysis and thermal degradation kinetics showed that the thermal stability of the PLA nanocomposites was significantly improved.  相似文献   

12.
Rheological, morphological and thermo-mechanical responses of poly(lactic acid) (PLA)/ethylene-co-vinyl-acetate copolymer (EVA) blends at EVA volume fractions varying in the range of 0–0.35 were evaluated. The micro-structural analysis demonstrated dispersive mixing at low content and co-continuous morphology at 30 wt % of EVA in PLA. Dynamic rheology demonstrated enhanced storage modulus and complex viscosity (η*) with increase in frequency of the blends indicated strong phase interaction. Cole-Cole and Han plots indicated partial miscibility and incompatibility between the polymer matrix and the dispersed phase. Dynamic mechanical analysis (DMA) revealed slight increase in damping parameters which indicated interaction or reinforcement in the blends. Additionally, the thermogravimetric analysis (TGA) of the blends showed two step degradation and enhanced thermal stability.  相似文献   

13.
We have prepared a series of polylactide/exfoliated graphite (PLA/EG) nanocomposites by melt‐compounding and investigated their morphology, structures, thermal stability, mechanical, and electrical properties. For PLA/EG nanocomposites, EG was prepared by the acid treatment and following rapid thermal expansion of micron‐sized crystalline natural graphite (NG), and it was characterized to be composed of disordered graphite nanoplatelets. It was revealed that graphite nanoplatelets of PLA/EG nanocomposites were dispersed homogeneously in the PLA matrix without forming the crystalline aggregates, unlike PLA/NG composites. Thermal degradation temperatures of PLA/EG nanocomposites increased substantially with the increment of EG content up to ~3 wt %, whereas those of PLA/NG composites remained constant regardless of the NG content. For instance, thermal degradation temperature of PLA/EG nanocomposite with only 0.5 wt % EG was improved by ~10 K over PLA homopolymer. Young's moduli of PLA/EG nanocomposites increased noticeably with the increment of EG content up to ~3 wt %, compared with PLA/NG composites. The percolation threshold for electrical conduction of PLA/EG nanocomposites was found to be at 3–5 wt % EG, which is far lower graphite content than that (10–15 wt % NG) of PLA/NG composites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 850–858, 2010  相似文献   

14.
The effect of halloysite nanotube (HNTs) particles and polyolefin elastomer-graft-maleic anhydride (POE-g-MA) in the polylactic acid (PLA) and polyolefin elastomer (POE) blend with a constant weight percentage composition have been studied using the scanning electron microscopy, rheometry, dynamic mechanical thermal analysis (DMTA) as well as the thermogravimetric testing. Through these, it was found that the simultaneous presence of POE-g-MA and HNT significantly improves the melt and solid viscoelastic properties and thermal stability of PLA/POE. This improvement is attributed to the increased interactions and improved interfacial adhesion between the present components. The microscopic images of PLA/POE-g-MA/POE (80/8/12) blend containing 4 wt% HNT showed a microstructure similar to the interconnected morphology due to the enhanced compatibility and better dispersion of nanoparticles. The rheological behavior was significantly changed for the PLA/POE blend containing POE-g-MA and 4 wt% HNT. This dramatic increase in the rheological properties was consistent with the morphological results. Only one glass transition temperature was observed in the DMTA plot of PLA/POE-g-MA/POE blend, which was a sign of a homogeneous, fully compatible system. In addition, a very strong reinforcing effect of HNT particles was observed in the presence of POE-g-MA for the nanocomposites. Finally, the thermogravimetric analysis showed a completely different trend for thermal degradation of PLA/POE-g-MA/POE nanocomposite containing 4 wt% HNT, which could be an indication of microstructural development.  相似文献   

15.
High-performance composites prepared by melt-blending polylactide (PLA, l/d isomer ratio of 96/4) with various amounts of β-anhydrite II (AII), the dehydrated form of calcium sulfate hemihydrate obtained by a specific thermal treatment at 500 °C, have been aged to study the evolution of their physical and mechanical properties with time. The effect of 1-year ageing under ambient conditions (below Tg of PLA) for selected composites, i.e., filled with 20 and 40 wt% AII, was determined and compared to unfilled PLA with the same processing and ageing history. Samples with an initial amorphous PLA matrix, obtained by fast quenching from the melt, were characterized before and during ageing. The changes in physical parameters have been studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and density measurements. Surprisingly, for all the samples, an increase of the storage modulus (E′) was recorded, as a result of ageing. This improvement was ascribed to the reorganization of the PLA structure induced by ageing. The structural reorganization was also reflected by a slight increase of PLA density and changes in thermal behaviour. The X-ray investigations showed unchanged crystallographic structure of AII both during blending with molten PLA and in the composite systems after ageing. The surprising stability of the thermo-mechanical properties of PLA and PLA/AII composites is in agreement with the results of size exclusion chromatography analysis (SEC) which did not show significant changes of PLA molecular weights brought out by ageing.  相似文献   

16.
Polycarbonate was melt blended with solid bisphenol A bis(diphenyl phosphate), and a series of organoclays. Effects of the organoclay modifiers on the flammability, thermal and mechanical properties of the nanocomposites were studied by limiting oxygen index, UL-94 burning test, thermogravimetric analysis, differential scanning calorimetry, tensile test and dynamic mechanical analysis. Although all the nanocomposites exhibit an intercalated-exfoliated morphology, they vary in the magnitude of intercalation revealed by X-ray diffraction and transmission electron microscopy. Flammability of the nanocomposites is strongly related to the thermal stability rather than the morphology. Glass transition temperature (Tg) and mechanical properties are controlled by both the morphology and the affinity of the organoclays with the matrix. The modifier containing hydroxyl moiety has stronger interactions with the matrix but it can promote its degradation, thus the corresponding nanocomposite exhibits a better intercalated morphology, higher Tg, superior strength and modulus however a worse thermal stability and flame retardancy. An additional silane within the organoclays would make the organoclays more compatible with the matrix but be a steric obstacle to the intercalation of the matrix chains; however, flame retardancy of the corresponding nanocomposite is enhanced due to the flame retardant nature of the silane. Similarly, the modifier bearing two long alkyl tails shows stronger affinity with the matrix than the one bearing a single tail, but it would hinder the intercalation due to the steric effect. These establishments between organoclay modifiers and the properties of nanocomposites might be guidance for developing materials with practical applications.  相似文献   

17.
Thermal and mechanical properties of polylactide (PLA) composites with different grades of calcium carbonate, 40 nm and 90 nm nanoparticles, and also with submicron particles, unmodified and modified with calcium stearate or stearic acid, obtained by melt mixing, were compared. Films with amorphous and crystalline matrices were prepared and examined.Tg of PLA in the composites remained unaffected whereas its cold crystallization was enhanced by the fillers and predominantly depended on filler content. Filling decreased thermal stability of the materials but their 5% weight loss temperatures well exceeded 250 °C, evidencing stability in the temperature range of PLA processing. The amorphous nanocomposites with modified nanoparticles exhibited improved drawability and toughness without a significant decrease of tensile strength; nearly two-fold increase of the elongation at break and tensile toughness was achieved at 5 wt% content of the modified nanofiller. Lack of surface modification of the filler, larger grain size with an average of 0.9 μm, and matrix crystallinity had a detrimental effect on the drawability. However, the presence of nanofillers and crystallinity improved tensile modulus of the materials by up to 15% compared to neat amorphous PLA.  相似文献   

18.
The main aim of this study was to synthesis of poly (lactic acid) (PLA)‐graft‐glycidyl methacrylate (GMA) as well as its influence on the properties of PLA/banana fiber biocomposites. PLA‐graft‐GMA graft copolymer (GC) was synthesized by melt blending PLA with GMA using benzoyl peroxide and dicumyl peroxide as initiators. Graft copolymerization was confirmed by FTIR and 1H‐NMR spectroscopic studies. PLA/silane treated banana fiber (SiB) biocomposites with various GC concentrations were prepared by melt blending followed by injection molding techniques. The influence of GC content on the mechanical, thermal and moisture resistance properties of the composite was investigated. The addition of 15 wt% GC content in the biocomposite provided optimum tensile and flexural strength, which is attributed to the greater compatibility between fiber and PLA matrix. The thermal properties of biocomposites have been evaluated using thermogravimetric analysis which provided evidence of improved interfacial adhesion between SiB and PLA by the addition of GC. Additionally, GC enhanced the moisture absorption resistance of biocomposites. These results indicated that GC is indeed a good candidate as a compatibilizing agent to improve the compatibility in PLA/fiber biocomposites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, the poly (lactic acid) (PLA) and poly (propylene carbonate) (PPC) blends with different compositions were prepared by a novel vane extruder based on elongation rheology. The mechanical properties, morphologies, crystallization behavior, thermal stability, and rheological properties of the blends were investigated. Mechanical test showed that PLA could be toughened by PPC to some extent, and the impact strength of the PLA was maximized when PPC content was about 30%. Differential scanning calorimetry analysis revealed that PPC had little effect on the melting process, the crystallization behavior of PLA component in the blend was improved, and the cold crystallizability of PLA decreased with the increase of PPC content when the PPC content was less than 50%. Thermogravimetry analysis showed that the thermal stability of the blends was improved by compounding with PLA. Scanning electron microscope showed that the dispersion of PLA droplets in PPC matrix was better than that of PPC droplets in PLA matrix. Rheological test showed that the melt viscosity of the pure PLA and the blend with 10% PPC was insensitive to shear rate, and the blends melt appeared shear thinning phenomenon with the increase of PPC content. It also showed that the blends microstructure changed with the addition of PPC and the blends with PPC content in a certain range had similar stress relaxation mechanism. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Sepiolite (SEP) nanofibers have been modified by grafting with poly(pentaerythritol diphosphonate dichloride‐hexamethylendiamine) (PSPHD) and compounded with low density polyethylene (LDPE) to form a nanocomposite. The various modified SEPs were characterized by X‐ray photoelectron spectroscopy, Fourier transform infrared, transmission electron microscopy (TEM), and thermogravimetric analysis. The Fourier transform infrared and X‐ray photoelectron spectroscopy tests show that covalent bonding exists between SEP fiber and modifiers. The nanoscale size and morphologies of SEP fiber and modified SEP nanofibers can be observed clearly by TEM. The thermogravimetric analysis results reveal that the multi‐step thermal degradation process of SEP fiber is changed by grafting modification. The various LDPE/SEP nanocomposites were characterized by scanning electron micrograph, TEM, dynamic mechanical analysis, and tensile test. The results suggest that a good interfacial modification effect has been obtained between PSPHD‐SEP and LDPE matrix. A particular improvement in tensile strength is reflected in tensile tests. Dynamic mechanical analysis shows that the storage moduli (E') of PSPHD‐SEP/LDPE nanocomposites are much higher than that of neat LDPE and a‐SEP/LDPE systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号