首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extremely alkaliphilic bacterial strain, Bacillus sp. PPKS-2, was isolated from rice mill effluents and screened for the production of extracellular keratinase. The maximum production of keratinase occurred after 48 h in shaking culture at pH 11.0 and 37 °C in a medium containing 0.5% soybean flour. The strain grew and produced alkaline keratinase using chicken feather and horn meal as the sole source of carbon and nitrogen. An addition of 0.1% soybean flour or feather hydrolysate and sodium sulfite to feather medium increased the production and complete solubilization of feather took place within 5 days under solid-state fermentation conditions. The partially purified enzyme displayed maximum activity at pH 11.0 and 60 °C in a broad range of NaCl, 0–16%, and was not inhibited by sodium dodecyl sulfate (10%), ethylenediaminetetraacetic acid (10 mM), H2O2 (15%), and other commercial detergents. Immobilization of the whole cells proved to be useful for continuous production of keratinase and feather degradation. The enzyme was effectively used to remove hair from goat hide. The strain PPKS-2 can be effectively used for solid waste management of poultry feather in submerged as well as solid-state fermentation.  相似文献   

2.
TheBacillus subtilis alkaline protease(aprA) gene was previously cloned on a pUBHO-derivative plasmid. High levels of expression and gene stability were demonstrated whenB. subtilis cells were grown on the laboratory medium 2XSG.B. subtilis cells harboring the multicopyaprA gene were grown on basal medium, supplemented with 1 % chicken feather as a source of energy, carbon, and nitrogen. Proteolytic and kera-tinolytic activities were monitored throughout the cultivation time. A high level of keratinolytic activity was obtained, and this indicates that alkaline protease is acting as a keratinase. Furthermore, considerable amounts of soluble proteins and free amino acids were obtained as a result of the enzymatic hydrolysis of feather. Biodegradation of feather waste using these cells represents an alternative way to improve the nutritional value of feather, since feather waste is currently utilized on a limited basis as a dietary protein supplement for animal feedstuffs. Moreover, the release of free amino acids from feather and the secreted keratinase enzyme would promote industries based on feather waste.  相似文献   

3.
Poly(3-hydroxybutyrate) [P(3HB)] homopolymer and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymer was produced by Comamonas sp. EB172 using single and mixture of carbon sources. Poly(3-hydroxyvalerate) P(3HV) incorporation in the copolymer was obtained when propionic and valeric acid was used as precursors. Incorporation of 3HV fractions in the copolymer varied from 45 to 86 mol% when initial pH of the medium was regulated. In fed-batch cultivation, organic acids derived from anaerobically treated palm oil mill effluent (POME) were shown to be suitable carbon sources for polyhydroxyalkanoate (PHA) production by Comamonas sp. EB172. Number average molecular weight (Mn) produced by the strain was in the range of 153-412 kDa with polydispersity index (Mw/Mn) in the range of 2.2-2.6, respectively. Incorporation of higher 3HV units improved the thermal stability of P(3HB-co-3HV) copolymer. Thus the newly isolated bacterium Comamonas sp. EB172 is a suitable candidate for PHA production using POME as renewable and alternative cheap raw materials.  相似文献   

4.
A keratinolytic enzyme (KerA1) secreted by a newly isolated Bacillus pumilus strain A1 cultivated in medium containing chicken feather meal was purified and characterized, and the gene was isolated and sequenced. The molecular mass of the purified enzyme was estimated to be 34,000 Da by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and gel filtration. The optimum pH and temperature for the purified keratinase were 9.0 and 60 °C, respectively, using keratin as a substrate. KerA1 showed a high stability towards nonionic surfactants. It was found to be relatively stable toward the strong anionic surfactant (SDS). The deduced amino acid sequence of the keratinase KerA1 differs from both the organic solvent tolerant protease of B. pumilus 115b and the dehairing protease of B. pumilus UN-31-C-42 by one and nine amino acids, respectively. These results suggest that this keratinase may be a useful alternative and ecofriendly route for handling the abundant amount of waste feathers and for applications in detergent formulations.  相似文献   

5.
6.
Chee GJ 《Talanta》2011,85(4):1778-1782
Trichloroethylene (TCE) is a toxic, recalcitrant groundwater pollutant. TCE-degrading microorganisms were isolated from various environments. The aerobic bacteria isolated from toluene- and tryptophan-containing media were Pseudomonas sp. strain ASA86 and Burkholderia sp. strain TAM17, respectively; these are necessary for inducing TCE biodegradation in a selective medium. The half-degradation time of TCE to a concentration of 1 mg/L was 18 h for strain ASA86 and 7 days for strain TAM17. While identifying toluene/TCE degradation genes, we found that in strain ASA86, the gene was the same as the todC1 gene product encoding toluene dioxygenase identified in Pseudomonas putida F1, and that in strain TAM17, the gene was similar to the tecA1 gene product encoding chlorobenzene dioxygenase identified in Burkholderia sp. PS12. A novel TCE biosensor was developed using strain ASA86 as the inducer of toluene under aerobic conditions. The TCE biosensor exhibited a linear relationship below 3 ppm TCE. Detection limit of the biosensor was 0.05 ppm TCE. The response time of the biosensor was less than 10 min. The biosensor response displayed a constant level during a 2 day period. The TCE biosensor displayed sufficient sensitivity for monitoring TCE in environmental systems.  相似文献   

7.
We attempted to synthesize novel polyhydroxyalkanoate (PHA) containing new 3-hydroxy-4-methylvalerate (3H4MV) monomer from the transformed strain of Cupriavidus necator PHB4 harboring the PHA synthase gene of Chromobacterium sp. USM2 (phaCCs). Novel PHA containing SCL and MCL monomers were successfully synthesized from crude palm kernel oil (CPKO) and isocaproic acid. Results showed that P(3HB-co-1 mol% 3HV-co-3 mol% 3H4MV-co-18 mol% 3HHx) possessed higher thermal stability, higher elastomeric behavior at room temperature and higher ductility than the P(3HB-co-5 mol% 3HHx). The novel PHA film was found to possess an interesting rubber-like elasticity and flexibility property which has not been reported. The soil surface degradation study showed that the novel PHA film was degraded faster than the 3HB homopolymer and copolymer with 5 mol% of 3HHx.  相似文献   

8.
The aim of this paper is to assess the biodegradation of phenanthrene by Flavobacteria FCN2 which was isolated from coke plant sludge via a classical shaken liquid medium enrichment method. The strain FCN2 can decompose phenanthrene (50 mg l?1) completely within 5 days. The values of pH decrease to 6.7 from 7.2 during degradation periods. And a detailed phenanthrene metabolism was assayed by using FTIR, UV and GC–MS. For FTIR, appearance of new broad absorption bands at 2858 cm?1, 2927 cm?1, 2955 cm?1 and another new strong absorption band at 1734 cm?1 in metabolites demonstrates that carboxyl group produced during phenanthrene degradation. Besides this, a very strong absorption band appears at 1260 cm?1. It is ascribed to C–C stretching vibration band in carbonyl group of arone. Two weak adsorption at 334 nm and 349 nm in UV spectra were assigned to the n-π* transition of CO of aldehyde. Two metabolites, phenanthrene-dihydrodiol and naphthalene-1-diol were identified in neutral fraction of phenanthrene degradation by using GC–MS. As a result carboxylic acids and arone were generated during biodegradation of phenanthrene by Flavobacteria FCN2.  相似文献   

9.
Reaction of benzyloxycarbonyl-5-oxazolidinones and of N-benzyloxycarbonylamino acids with BCl3 in dichloromethane at room temperature affords the corresponding free amino acids.  相似文献   

10.
We isolated 5 mesophilic microorganisms that form clear zones around the colony on an opaque medium containing the aliphatic-aromatic copolyester poly(60 mol% butylene adipate-co-40 mol% butylene terephthalate) (PBAT). Among all strains, the fungal strain NKCM1712 degraded PBAT at the fastest rate (3.5 ± 0.3 μg cm−2 h−1). Genetic and morphological analyses revealed that this strain was closely related to Isaria fumosorosea (phylum Ascomycota). Mass spectroscopic analysis revealed that the degradation products were T, AB, TB, BAB, and ABT (T, terephthalic acid unit; A, adipic acid unit; B, 1,4-butanediol unit)] in the culture of the strain that used PBAT as the sole carbon source. Furthermore, the PBAT degradation ability of this strain in terms of BOD suggested that it could utilize the PBAT degradation products as growth substrates. This is the first report of a mesophilic strain that can mineralize an aliphatic-aromatic polyester into carbon dioxide on its own.  相似文献   

11.
Among all endophytic keratinolytic fungal isolates recovered from marine soft coral Dendronephthya hemprichii, Penicillium spp. Morsy1 was selected as the hyperactive keratinolytic strain under solid substrate fermentation of different agriculture and poultry wastes. The optimization of extraction process, physicochemical parameters affecting the keratinase production in solid-state fermentation, and the purified keratinase parameters were studied. Maximum keratinase activity (1,600 U g−1, initial dry substrate) was recovered from moldy bran with 0.1% Tween 80. The optimized production conditions were rice straw as carbon source, pH of medium 6, growth temperature 26 °C, initial moisture content of 80% (v/w), inoculum size of 105 spores ml−1, and an average particle size of the substrate 0.6 mm (3,560 U g−1, initial dry substrate after 5 days of fermentation). Two types of keratinase (Ahm1 and Ahm2) were purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sepharose, and gel filtration chromatography. Enzyme molecular weights were 19 kDa (Ahm1) and 40 kDa (Ahm2). The kinetic parameters of purified keratinases were optimized for the hydrolysis of azokeratin by Ahm1 (pH 7.0–8.0, stable in pH range of 6.0 to 8.0 at 50 °C) and Ahm2 enzymes (pH 10.0–11.0, stable in pH range of 6.0 to 11.0 at 60–65 °C). Whereas inhibitors of serine (phenylmethylsulfonyl fluoride) and cysteine (iodoacetamide) proteases had minor effects on both Ahm1 and Ahm2 activity, both keratinases were strongly inhibited by chelating agents EDTA and EGTA. These findings suggest that serine and cysteine residues are not involved in the catalytic mechanisms, and they are metalloproteases.  相似文献   

12.
Isolation and characterization of poly(butylene succinate)-degrading fungi   总被引:3,自引:0,他引:3  
We isolated 12 poly(butylene succinate) (PBSu)-degrading fungi from various soil environments. Among the isolates, the NKCM1706 strain exhibited the fastest degradation rate for the PBSu film (10.5 μg cm−2 h−1). Phylogenetic analysis revealed that this strain is closely related to Aspergillus fumigatus (internal transcribed spacer (ITS) identity, 100%). Further, this strain exhibited PBSu-hydrolytic activity in the presence of poly(?-caprolactone) (PCL), PBSu, and poly(butylene succinate-co-adipate) (PBSA). On adding this strain into the soil sample, the PBSu degradation rate accelerated approximately sixfold, suggesting that this strain plays a crucial role in PBSu degradation in actual soil environments. In addition to PBSu, the NKCM1706 strain could degrade PBSA, poly(ethylene succinate) (PESu), poly(3-hydroxybutyrate) (P(3HB)), and PCL.  相似文献   

13.
A lipase from Aspergillus niger MTCC 2594 was purified 53.8-fold to homogeneity by hydrophobic interaction chromatography using octyl sepharose and the enzyme showed two protein bands with apparent molecular mass of 35 and 37 kDa respectively. The lipase exhibited maximum activity at pH 7.0 and 37 °C and was stable between pH 4.0 and 10.0 and temperatures up to 50 °C. The values of Km and Vmax were 3.83 mM and 32.21 μmol/min/mg respectively, using olive oil as substrate. Lipase encoding gene, lipA, coded for 297 amino acid residues with conserved pentapeptide sequence, G-H-S-L-G, was cloned and expressed in Pichia pastoris. Although lipA showed high homology with the known Aspergillus lipases, it exhibited differences in putative lid domain. Both native and recombinant lipases have potential for degradation of poly(lactic acid) and poly(ε-caprolactone), and the present study will serve as a baseline of initial studies for its exploitation in polymer degradation.  相似文献   

14.
Pyrazinamide (PZA) is one of the mainstays WHO-recommended drugs for therapy of tuberculosis (TB). The emergence of PZA resistance in clinical isolates of M. tuberculosis is often associated with pncA gene mutations encoding PZase. A local clinical isolate of Mycobacterium tuberculosis strain showed phenotipe resistant to PZA at concentration of 10 μg/mL. The ORF of pncA gene of the isolate showed deletion of guanine base at position 81, then followed by shortening of 70 amino acids from C-terminal of PZAse which has 186 amino acid residues. The mutant of PZase took frame shift of amino acids after the residue at position 27. The pncA gene mutation at the level of genotype, that produced a physical-chemical alteration of the active site or the metal-binding site of PZase, in this case perturbing or lossing its activity was proposed as trigering the PZA resistance in P14 clinical isolate of M. tuberculosis strain.  相似文献   

15.
Feather waste is generated in large amounts as a byproduct of commercial poultry processing. This residue is almost pure keratin, which is not easily degradable by common proteolytic enzymes. A feather-degrading bacterium was isolated from poultry feathers in decomposition. The strain identified as kr16 showed important feather-degrading activity when grown on basal medium containing 10 g/L of native feather as the source of energy, carbon, and nitrogen. The isolate was characterized according to the phenotypical characteristics and biochemical profiling that belong to the Bacillus genus. Keratinolytic activity of this isolate was monitored during cultivation of the bacterium on raw feathers at different temperatures. Maximum growth and feather-degrading activity were observed at 30–37°C. The keratinolytic enzyme had a pH optimum ranging from 8.0 to 11.0 and a temperature optimum of 45–65°C. The keratinase was strongly inhibited by EDTA and the metal ions Hg2+ and Sn2+.  相似文献   

16.
《印度化学会志》2021,98(9):100120
Biodegradation of chlorpyrifos, a widely used organophosphorus insecticide, was accomplished by using a white-rot fungal strain (Trametes hirsuta MTCC-1171). The experimental results showed that the fungal strain can effectively and rapidly degrade chlorpyrifos while using it as a sole source of carbon and energy when provided with mineral salt medium (MSM). The optimum experimental conditions for degradation of chlorpyrifos in liquid media can be summed as follows: initial pH 6.0; mycelial inoculum 0.18 ​± ​0.01 ​g ​L−1 (dry weight); chlorpyrifos concentration 150 ​mg ​L−1; pH 6.0; temperature 30 ​°C; and shaking speed 150 ​rpm. Under these optimal experimental parameters, T. hirsuta MTCC-1171 achieved ≥95% degradation of chlorpyrifos in 16 ​h of incubation. The degradation rate was quantified by employing HPLC followed by identification of degradation metabolites using gas chromatography–mass spectrometry (GC-MS). 2,4-Bis (1,1 dimethylethyl) phenol, a fuel additive, was found to be a major metabolite product of chlorpyrifos degradation. However, no metabolite bioaccumulation was observed in the process. Additionally, soil studies were carried out to investigate the degradation ability of the strain against chlorpyrifos, in a natural environment. During the assessment 37 ​± ​2.3% degradation was observed after 15 days of incubation. These results illustrate that T. hirsuta MTCC-1171 has a potential of using chlorpyrifos as a sole source of carbon. Besides, fundamental understanding gained through this work lays a foundation to investigate efficient and rapid bioremediation processes in agricultural and forest environments.  相似文献   

17.
This study aimed to investigate the factors affecting molecular weight of poly[(R)-3-hydroxybutyrate] [P(3HB)] when polyhydroxyalkanoate (PHA) synthase (PhaRCBsp) from Bacillus sp. INT005 was used for P(3HB) synthesis in Escherichia coli JM109. It was found that the molecular weight of P(3HB) decreased with time in mid- and late-phase of culture and was strongly affected by culture temperature. At 37 °C culture temperature, the molecular weight of P(3HB) rapidly decreased from 4.4 × 105 to 4.8 × 104 with culture time, whereas it was almost unchanged at 25 °C. Kinetic analysis suggested that the decrease in molecular weight of P(3HB) was due to random scission of the polymer chain. The decrease in molecular weight of P(3HB) was not observed when PHA synthases other than PhaRCBsp were expressed. This study sheds light on the unique behaviour in molecular weight change of P(3HB) that is synthesized by E. coli expressing PhaRCBsp.  相似文献   

18.
Three new micropeptins, micropeptin KR1030, KR1002 and KR998 and the known microcyclamide GL546A were isolated from the extract of Microcystis sp. bloom material collected in Kabul Reservoir, Israel. The planar structures of the compounds were determined by homonuclear and inverse-heteronuclear 2D-NMR techniques as well as high-resolution mass spectrometry. The absolute configuration of the asymmetric centres of the amino acids was studied using Marfey's method for HPLC. The inhibitory activity of the compounds was determined for the serine proteases: trypsin, chymotrypsin and elastase.  相似文献   

19.
Two new carbazomycin dimers (6 and 7) and 3-hydroxy-1,2-dimethyl-2,3-dihydro-1H-carbazol-4-one (9) together with six known compounds, carbazomycins A-D, cyclomarin C, and pimprinine have been isolated from Streptomyces sp. BCC26924. Carbazomycins B, C, and cyclomarin C exhibited antimalarial activity (against Plasmodium falciparum, K1 multi-drug resistant strain) with IC50 in a range of 0.24-2.37 μg/mL. Cyclomarin C exhibited anti-TB activity with a minimum inhibitory concentration value of 0.10 μg/mL, while carbazomycin D, compound 7, and pimprinine displayed MIC values in a range of 12.5-25.0 μg/mL. In addition, compounds 2, 5, 6, and 7 showed weak cytotoxicity against cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells.  相似文献   

20.
This paper, as a novelty to this field, presents the deproteinization and derivatization of plasma's free amino acids (PFAAs), simultaneously, in a single step, with the acetonitrile (ACN) containing 9-fluorenylmethyloxycarbonyl chloride (FMOC) reagent. Deproteinization and derivatization, were studied with 22 amino acids, applying photodiode array (DAD) and fluorescence (FL) detection, simultaneously. Model investigations have been carried out as a function of the FMOC concentration, reaction time and reaction conditions: with standard solutions, with human plasma samples in its initial condition and fortified with standard amino acids (excluding tryptophan because it co-elutes with the hydrolyzed FMOC). Reproducibilities of 22 amino acids, including both histidine and tyrosine derivatives, obtained under optimum derivatization conditions are presented (at 3.0 mM FMOC concentration, at pH 9; derivatization time = 20 min), and characterized with the relative standard deviation percentages of their responses (≤4.4%, RSD). Quantitation limit (LOQ) of amino acid FMOC derivatives proved to be 2.5 pmol, except for cystine, ornithine (5 pmol) and for the total of tyrosines (N-FMOC-tyrosine and N,O-FMOC-tyrosine 10 pmol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号