首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
Structural changes in the condensed phase of bisphenol A polycarbonate (containing 0.45 wt% poly(tetrafluoroethylene))/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate) (PC/SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) during thermal treatment in nitrogen atmosphere and in fire residues were investigated by solid-state NMR. 1H, 11B, 13C and 31P NMR experiments using direct excitation with a single pulse and 1H-31P cross-polarization (CP) were carried out including 31P{1H} and 13C{31P}double-resonance techniques (REDOR: Rotational Echo Double Resonance) on a series of heat-treated samples (580 K-850 K). Because many amorphous phases occur in the solid residues, and solid-state NMR spectroscopy addresses the most important sites carbon, phosphorus and boron, this paper is the key analytical approach for understanding the pyrolysis and flame retarding phenomenon in the condensed phase of PC/SiR/BDP and PC/SiR/BDP/ZnB.For the system PC/SiR/BDP it is shown that (i) at temperatures around 750-770 K (main decomposition step) carbonaceous charring of PC occurs and arylphosphate structures are still present, reacted in part with the decomposing PC; (ii) for higher temperatures from 770 K the phosphorus remaining in the solid phase increasingly converts to amorphous phosphonates and inorganic orthophosphates with a minor amount of crystalline orthophosphates; and (iii) 1H-31P{1H} CP REDOR and 1H-13C{31P} CP REDOR NMR experiments suggest that the phosphates and phosphonates are bound via oxygen to aromatic carbons, indicating the interaction with the carbonaceous char.When ZnB is added to the system PC/SiR/BDP, (i) ZnB leads to a slightly enhanced PC decomposition for temperatures below 750 K; (ii) α-Zn3(PO4)2 and borophosphate (BPO4) are formed in small amounts at high temperatures suggesting a reaction between BDP and ZnB during thermal decomposition; and (iii) most of the borate remains in the solid residues, forming an amorphous pure borate network, with the BO3/BO4 ratio increasing with higher temperatures.The NMR data of thermal and fire residues are highly correlated, underlining the importance of this work for understanding the pyrolysis and flame retardancy mechanisms in the condensed phase during the burning of the PC/SiR blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号