首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
N-n-Propyl-2-pyridylmethanimine, 1, N-n-octyl-2-pyridylmethanimine, 2, N-n-lauryl-2-pyridylmethanimine, 3, and N-n-octadecyl-2-pyridylmethanimine, 4 have been used in conjunction with copper(II) bromide and azo initiators for the reverse atom transfer radical polymerisation of a range of methacrylates. AIBN to CuIIBr2 ratios of 0.5:1, 0.75:1 and 1:1 give PMMA with Mn 11 500 g mol−1 (PDi = 1.24) (at 22% conversion), 12 500 g mol−1 (PDi = 1.06) (at 83% conversion) and 10 900 g mol−1 (PDi = 1.11) (at 84% conversion), respectively. A CuIIBr2 complex is demonstrated to be needed at the start of the reaction for good control over molecular weight and polydispersity as reactions using Cu(I)Br as catalyst yielded PMMA of Mn 31 000 g mol−1 (PDi = 2.90), reactions with no copper yield PMMA of Mn 33 000 g mol−1 (PDi = 2.95). The RATRP of styrene was carried out using CuIIBr2 as catalyst. AIBN to CuIIBr2 ratio of 0.5:1, 0.75:1 and 1:1 gave PS with Mn = 12 400 g mol−1 (PDi = 1.27) at low conversion, Mn = 15 500 g mol−1 (PDi = 1.11) and 12 400 g mol−1 (PDi = 1.38), respectively at ∼85% conversion. A series of block copolymers of MMA with BMA, BzMA and DMEAMA (15 600 g mol−1 (PDi = 1.18), 13 300 g mol−1 (PDi = 1.14) 15 300 g mol−1 (PDi) = 1.16), using a PMMA macroinitiator were prepared. Emulsion polymerisation of MMA using [initiator]:[Cu(II)Br2] ratio = 0.5:1 with Brij surfactant gave a linear increase of Mn with respect to conversion, final Mn = 112 800 g mol−1 (PDi = 1.42). Further reactions were carried out with [initiator]:[Cu(II)Br2] ratio = 0.75:1 and 1:1. Both giving PMMA with Mn ∼ 32 000 g mol−1 (PDi ∼ 2.4). These reactions exhibit no control, this is because the azo initiator is present in excess and all of the monomer is consumed by a free radical polymerisation as opposed to a controlled reaction. Particle size analysis (DLS) showed the particle size between 160 and170 nm in all cases.  相似文献   

2.
The second order 2π + 2π homo- and co-dimerization between various classes of fluorinated olefins has been investigated. The fluorinated olefins examined in this study were: (1) RfOCFCF2 (perfluorinated vinyl ethers); (2) RfCFCF2 (perfluorinated terminal olefins); (3) RCH2CFCF2; (4) PhOCFCF2 (aryl perfluorinated vinyl ethers).Homo-dimerizations between vinyl ethers have an Ea between 20 and 24 kcal mol−1 while homo-dimerizations between terminal olefins have an average Ea between 35 and 40 kcal mol−1; vinyl groups have a second order cyclodimerization rate constant of formation between 1 × 10−7 and 1 × 10−4 M−1 S−1 while vinyl ethers have a second order cyclodimerization rate constant of formation = 1 × 10−1 M−1 s−1. If there is a CH2 group α to the terminal olefin, the Ea of cyclodimerization is about 7 kcal mol−1) lower with respect to those olefins with a CF2 α to the instauration. At 270 °C co-dimerizations have an average ΔS = −45 cal K−1 mol−1 and a second order rate constant of cyclodimerization ranging between 0.1 × 10−4 M−1 S−1 and 16 × 10−4 M−1 S−1 while homo-dimerizations have an average ΔS = −17 cal K−1 mol−1 and a second order rate constant which can span from 7 × 10−7 M−1 S−1 to as much as 1 × 10−1 M−1 S−1 depending on the electronic nature of the perfluorinated terminal olefin.A good correlation between the electronegativity χ and the activation energy Ea demonstrates that “polarizing” groups, O, PhO, α to the olefin play an important role in the formation and stabilization of the cyclodimerization biradical intermediate.  相似文献   

3.
Initial decomposition temperature (Ti), apparent activation energy of degradation (Ea) and glass transition temperature (Tg) of some low molar mass (Mn ≈ 8000 g mol−1) sulfonated poly(arylene ethersulfone)s s-(PAES)s were determined to check their dependence on sulfonation degree (SD). The results obtained were compared with those for unsulfonated poly(arylene ethersulfone) PAES. In order to have an accurate control of the chemical structure, a pre-sulfonation route was followed for the preparation of sulfonated compounds. The thermal behaviour of the investigated s-(PAES)s as well as that of PAES appears not to be influenced by the environment (flowing nitrogen or static air atmosphere) of degradation. Both Ti and Tg values of s-(PAES)s were higher than those of PAES and increased quite linearly as a function of sulfonation degree. An analogous linear trend was observed for the apparent degradation energy of s-(PAES)s, but the values found were largely lower than those of unsulfonated homopolymer. The results are discussed and interpreted.  相似文献   

4.
Synthesis of aromatic poly(ether ketone) (3) with a narrow molecular weight distribution (Mw/Mn) was investigated via polycondensation. Mns of 3 could be controlled varying the feed ratio of monomer (1) and initiator (2) maintaining relatively narrow Mw/Mns (<1.3). The kinetics of polycondensation obeyed a first-order relationship between polycondensation time and -(1/[2]0) ln([1]/[1]0), and the rate of polycondensation was estimated as 2.57 mol−1 L h−1. MALDI-TOF mass analysis of 3 indicated that polycondensation should proceed via chain growth manner to give 3 having an initiator unit in each chain end.  相似文献   

5.
In this study, the oxidative polycondensation reaction conditions of 2-[(4-fluorophenyl) imino methylene] phenol (FPIMP) with air oxygen and NaOCl were studied in an aqueous alkaline medium between 60 and 90 °C. Synthesized oligo-2-[(4-fluorophenyl) imino methylene] phenol was characterized by 1H-NMR, FT-IR, UV-Vis, size exclusion chromatography (SEC) and elemental analysis techniques. The yield of oligo-2-[(4-fluorophenyl) imino methylene] phenol (OFPIMP) was found to be 62.00% (for air O2 oxidant) and 97.70% (for NaOCl oxidant) at the optimum reaction conditions. According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of OFPIMP were found to be 1370 g mol−1, 1979 g mol−1 and 1.45, using NaOCl, 2105 g mol−1, 2557 g mol−1, and 1.22, using air O2, respectively. During the oxidative polycondensation reaction, (2.88%) a part of -CHN group oxidized to carboxylic acid (-COOH). TG and TG-DTA analyses were shown to be more stable of oligo-2-[(4-fluorophenyl) imino methylene] phenol and its oligomer metal complexes than monomer against thermo-oxidative decomposition. The weight loss of OFPIMP was found to be 97.00% at 900 °C. The weight losses of OFPIMP-Co, OFPIMP-Ni OFPIMP-Cu oligomer-metal complex compounds were found to be 88.66%, 94.36% and 83.21%, respectively, at 1000 °C.  相似文献   

6.
The crystal structure of β-BaZr(PO4)2, archetype of the high-temperature forms of BaM(PO4)2 phosphates (with M=Ti, Zr, Hf and Sn), has been solved ab initio by Rietveld analysis from synchrotron X-ray powder diffraction data. The phase transition appears as a topotactic modification of the monoclinic (S.G. C2/m) lamellar α-structure into a trigonal one (S.G. ) through a simple mechanism involving the unfolding of the layers. The thermal expansion is very anisotropic (e.g., −4.1<αi<34.0×10−6 K−1 in the case of α-BaZr(PO4)2) and quite different in the two forms, as a consequence of symmetry. It stems from a complex combination of several mechanisms, involving bridging oxygen rocking in M-O-P linkages, and “bond thermal expansion”.  相似文献   

7.
This contributions shows with a series of ab initio MP2 and DFT (BP86 and B3-LYP) computations with large basis sets up to cc-pVQZ quality that the literature value of the standard enthalpy of depolymerization of Sb4F20(g) to give SbF5(g) (+18.5 kJ mol−1) [J. Fawcett, J.H. Holloway, R.D. Peacock, D.R. Russell, J. Fluorine Chem. 20 (1982) 9] is by about 50 kJ mol−1 in error and that the correct value of (Sb4F20(g)) is +68 ± 10 kJ mol−1. We assign , , and values for SbnF5n with n = 2-4 and compare the results to available experimental gas phase data. Especially the MP2/TZVPP values obtained in an indirect procedure that rely on isodesmic reactions or the highly accurate compound methods G2 and CBS-Q are in excellent agreement with the experimental data, and reproduce also the fine experimental details at temperatures of 423 and 498 K. With these data and the additional calculation of [SbnF5n+1] (n = 1-4), we then assessed the fluoride ion affinities (FIAs) of SbnF5n(g), nSbF5(g), nSbF5(l) and the standard enthalpies of formation of SbnF5n(g) and [SbnF5n+1](g): FIA(SbnF5n(g)) = 514 (n = 1), 559 (n = 2), 572 (n = 3) and 580 (n = 4) kJ mol−1; FIA(nSbF5(g)) = 667 (n = 2), 767 (n = 3) and 855 (n = 4) kJ mol−1; FIA(nSbF5(l)) = 434 (n = 1), 506 (n = 2), 528 (n = 3) and 534 (n = 4) kJ mol−1. Error bars are approximately ±10 kJ mol−1. Also the related Gibbs energies were derived. ΔfH°([SbnF5n+1](g)) = −2064 ± 18 (n = 1), −3516 ± 25 (n = 2), −4919 ± 31 (n = 3) and −6305 ± 36 (n = 4) kJ mol−1.  相似文献   

8.
This study describes the miscibility phase behavior in two series of biodegradable triblock copolymers, poly(l-lactide)-block-poly(ethylene glycol)-block-poly(l-lactide) (PLLA-PEG-PLLA), prepared from two di-hydroxy-terminated PEG prepolymers (Mn = 4000 or 600 g mol−1) with different lengths of poly(l-lactide) segments (polymerization degree, DP = 1.2-145.6). The prepared block copolymers presented wide range of molecular weights (800-25,000 g mol−1) and compositions (16-80 wt.% of PEG). The copolymer multiphases coexistance and interaction were evaluated by DSC and TGA. The copolymers presented a dual stage thermal degradation and decreased thermal stability compared to PEG homopolymers. In addition, DSC analyses allowed the observation of multiphase separation; the melting temperature, Tm, of PLLA and PEG phases depended on the relative segment lengths and the only observed glass transition temperature (Tg) in copolymers indicated miscibility in the amorphous phase.  相似文献   

9.
In this study, the reaction conditions of poly-4-[(2-methylphenyl)iminomethyl]phenol (P-2-MPIMP) were studied by using oxidants such as air O2, H2O2 and NaOCl in an aqueous alkaline medium between 50 and 90 °C. The structures of the synthesized monomer and polymer were confirmed by FT-IR, UV-vis, NMR and elemental analysis. The characterization was made by TG-DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly-4-[(2-methylphenyl)iminomethyl]phenol (P-2-MPIMP) was found to be 20% (for air O2 oxidant), 33% (for H2O2 oxidant), and 74% (for NaOCl oxidant). According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of P-2-MPIMP were found to be 3300, 4100 g mol−1 and 1.242, using H2O2, and 4550, 5150 g mol−1and 1.132, using air O2 and 5300, 5850 g mol−1 and 1.104, using NaOCl, respectively. According to TG analysis, the weight losses of 4-[(2-methylphenyl)iminomethyl]phenol (2-MPIMP) and P-2-MPIMP were found to be between 75.29% and 48.17% at 1000 °C, respectively. P-2-MPIMP was shown to have a higher stability against thermal decomposition. Also, electrical conductivity of the P-2-MPIMP was measured, showing that the polymer is a typical semiconductor. Electrochemically, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and electrochemical energy gaps ( of 2-MPIMP and P-2-MPIMP were found to be −6.01, −6.03; −2.63, −2.82; 3.38 and 3.21 eV, respectively. According to UV-vis measurements, the optical band gap (Eg) of 2-MPIMP and P-2-MPIMP was found to be 3.40 and 2.97 eV, respectively.  相似文献   

10.
Transition metal mediated living radical polymerisation of butyl methacrylate has been demonstrated with a copper(I) halide N-alkyl-2-pyridylmethanimine ligands based catalyst. Optimum conditions were found to be with copper(I) chloride and N-octyl-2-pyridylmethanimine catalyst at 65 °C where conversions of 85% were achieved with polymers of Mn = 8900 g mol−1 (theoretical = 8400 g mol−1) and PDI = 1.23. Both non-ionic and ionic surfactants were employed which were also made by living radical polymerisation. The non-ionic surfactant was a block copolymer of PMMA from a polyethyleneglycol macroinitiator (total Mn = 7600 g mol−1, PDI = 1.20) and the ionic surfactant PDMEAMA-PMMA (total Mn = 8000 g mol−1, PDI = 1.21) with the PDMEAMA block quaternized with MeI (13.8%, 28.4%, 47.7% and 100%). A range of ligands were employed in the suspension polymerisation by varying the alkyl group on the ligand increasing the hydrophobicity (alkyl = propyl (PrMI), pentyl (PMI), octyl (OMI), dodecyl (DMI) and octadecyl (ODMI)). The more hydrophobic ligands were found to be more effective due to lower partitioning into the aqueous phase. Block copolymers of P(EMA)-P(BMA) and P(MMA)-P(BMA) were prepared by first preparing macroinitiators via living radical polymerisation (Mn = 1600 g mol−1 (PDI = 1.23) for P(EMA) and Mn = 1500 g mol−1 (PDI = 1.22) for P(MMA)) and using them for initiation of BMA in suspension polymerisation. Block copolymers had Mn between 12,800 and 13,700 g mol−1 with PDI between 1.33 and 1.54. Block copolymer growth showed excellent linear first order kinetics wrt monomer and demonstrated characteristics expected of a living radical polymerisation. Particle sizes were measured by SEM and DLS with good agreement (1.4-2.8 μm) and SEM showed spherical particles were formed.  相似文献   

11.
The application of well-defined neodymium alkoxides/aryloxides in combination with dialkylmagnesium reagents for 1,3-butadiene (BD) polymerization and copolymerization with styrene (St) and glycidyl methacrylate (GMA) has been investigated. The trinuclear complex Nd3(Ot-Bu)9(THF)2 (1) provided a low-activity system for BD polymerization, even at high temperature, but with a high trans-1,4 stereospecificity (trans-1,4≈95%). Aryloxide complexes Nd(O-2,6-t-Bu2-4-Me-Ph)3(THF) (2) and Nd(O-2,6-t-Bu2-4-Me-Ph)3 (3) were found to give more active systems. The polymerization displayed a controlled character, i.e. a precise control of the molecular weight and a low polydispersity (Mw/Mn<1.30) for high catalyst concentration, keeping the same level of stereocontrol over the polymerization course. The statistical copolymerization of BD and styrene with those systems was successful. High-molecular weight copolymers (Mn up to 50?000 g mol−1) with noticeable styrene content (3-15 mol%) were synthesized. Determination of the microstructure by 13C-NMR showed exclusively trans-1,4-BD-St sequences. The livingness of BD polymerization encouraged attempts of diblock copolymerization with GMA. In this case, low-molecular weight polymers with variable polydispersities were obtained (Mn<20?000 g mol−1; Mw/Mn=1.4-5.0). The composition of the copolymers was analyzed by 1H- and 13C-NMR and IR spectroscopies. SEC analyses confirmed the true nature of the diblock copolymer. The influence of the alkylating agent on those (co)-polymerizations was briefly studied. Finally, the mechanism of polymerization is also discussed.  相似文献   

12.
Low-melting bisphthalonitrile oligomers with variable length of aromatic ether nitrile linkages (nPEN-BAPh) was firstly synthesized and the length of the linkages (n) was controlled by mole ratio of 2, 6-dichlorobenzonitrile and bisphenol A. The oligomers were characterized by FTIR and NMR spectra, and detailed study showed that the linkages were constructed in the backbone of nPEN-BAPh. The FTIR showed, with the curing reaction progressed, the characteristic peak of nitrile at 2230 cm−1 disappeared while the characteristic peak of phthalocyanine ring at 3290, 1010 cm−1 and triazine ring at 1360 cm1 appeared. The melting and polymerization temperature of the oligomers was around 60 °C and 220 °C, respectively. So a large processing window was obtained. The char yields of completely cured materials were above 65% at 800 °C in nitrogen and over 70% at 600 °C in air. All materials exhibited excellent thermal and thermo-oxidative stability.  相似文献   

13.
In this work, the syntheses of poly(butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate) triblock copolymer and poly(methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate) pentablock copolymers using copper mediated living radical polymerisation are reported. Living radical polymerisations were performed using the system CuIBr/N-(n-propyl)-2-pyridylmethanimine as catalyst in conjunction with a difunctional initiator, the 1,4-(2-bromo-2-methylpropionoto)benzene (1). The syntheses of poly(MMA), poly(BMA-b-MMA-b-BMA) and poly(MMA-b-BMA-b-MMA-b-BMA-b-MMA) are described in detail using 1H NMR spectroscopy and size exclusion chromatography. The living behaviour and the blocking efficiency of these polymerisations were investigated in each case. Difunctional initiator, 1, based on hydroquinone was synthesised and fully characterised and subsequently used to give difunctional poly(methyl methacrylate) macroinitiators with molecular weights up to 54,000 g mol−1 and polydispersity between 1.07 and 1.32; molecular weights were close to the theoretical values. The difunctional macroinitiators were used to reinitiate butyl methacrylate to give triblock copolymers of Mn between 17,500 and 45,700 g mol−1. Polydispersities remained narrow below 25,000 g mol−1 but broadened at higher masses. The difunctional triblock macroinitiators were subsequently used to reinitiate methyl methacrylate to give ABABA pentablock copolymers with Mn up to 37,000 g mol−1 with polydispersity=1.13. Under certain conditions radical-radical reaction led to a broadening of polydispersity index.  相似文献   

14.
A series of poly(amide imide)s (PAIs) having alternate (amide–amide) and (imide–imide) units (polymers 114 and 2235), and random distribution of amide-imide linkages (polymers 1521 and 3642) were prepared by low temperature solution polymerization of benzene-1,2,4,5-tetracarboxylic dianhydride (PMDA)/benzophenone-3,3′,4,4′-tetracarboxylic dianhydride (BTDA), diamines (cyclic and aromatic) and acid chloride in dimethylforamide. All the polymers were readily soluble in polar aprotic solvents with inherent viscosities in the range of 0.134–0.878. The process of cycloimidization of poly(amide amic acid)s (PAAs) to PAIs was investigated by TGA and FT-IR techniques at four different temperatures i.e., 175, 200, 225, and 260 °C. The rate of cycloimidization was calculated by taking into account the theoretical weight loss (WT), obtained from [n × Mw (H2O)/Mw (RU)] W, where Mw (H2O) molecular weight of water, W weight of PAA taken for TGA, Mw (RU) the molecular weight of repeat unit of PAA, n number of water molecules eliminated per repeat unit of PAA upon cycloimidization. For a particular diamine, the extent of percentage cycloimidization at the end of the isothermal heating was higher for PAAs containing trimellitic anhydride chloride (TMAc) unit, irrespective of the nature of the dianhydride and diamine. Thermal and thermooxidative degradation of PAIs was investigated by TGA in nitrogen and oxygen atmosphere. The initial decomposition temperatures (IDT) of polymers are above 260 °C, and vary widely (from 260 to 501 °C) depending upon the structure of the polymer backbone. PAIs containing TMAc exhibited higher thermal stability as compared to those polymers having diacid chloride units, in both N2/O2 atmospheres.  相似文献   

15.
Asymmetric poly(styrene-b-methyl methacrylate) (PS-b-PMMA) diblock copolymers of molecular weight Mn = 29,700 g mol−1 (MPS = 9300 g mol−1MPMMA = 20,100 g mol−1, PD = 1.15, χPS = 0.323, χPMMA = 0.677) and Mn = 63,900 g mol−1 (MPS = 50,500 g mol−1, MPMMA = 13,400 g mol−1, PD = 1.18, χPS = 0.790, χPMMA = 0.210) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Atomic force microscopy (AFM) was used to investigate the surface structure of thin films, prepared by spin-coating the diblock copolymers on a silicon substrate. We show that the nanostructure of the diblock copolymer depends on the molecular weight and volume fraction of the diblock copolymers. We observed a perpendicular lamellar structure for the high molar mass sample and a hexagonal-packed cylindrical patterning for the lower molar mass one. Small-angle X-ray scattering investigation of these samples without annealing did not reveal any ordered structure. Annealing of PS-b-PMMA samples at 160 °C for 24 h led to a change in surface structure.  相似文献   

16.
A series of copoly(methoxy-thiocyanurate)s is prepared in good yield and purity, and fully characterised. Many of the resulting polymers, formed at room temperature using phase transfer catalysis, can be cast into films with good resilience and thermal stability (some examples suffer practically no mass loss when held isothermally at 190 °C and only display appreciable losses when held continuously at 225 °C). Char yields of 61–64% are achieved in nitrogen depending on backbone structure. Some problems were encountered with solubility, particularly with copolymers, which limited molecular weights analysis, but values of Mn = 7000–10,000 g mol−1 were obtained for the polycyanurate and polythiocyanurate homopolymers. DSC reveals polymerisation exotherms with maxima at 197–207 °C (ΔHp = 39–48 kJ/mol), which are believed to be due to isomerisation of the (activation energies span 172–205 kJ/mol), since X-ray powder diffraction measurements reveal no evidence of crystalline structure in the resulting product.  相似文献   

17.
The standard absolute entropies of many materials are unknown, which precludes a full understanding of their thermodynamic stabilities. We show, for both organic liquids and solids, that entropies are reliably linearly correlated with volume per molecule, Vm (nm3 per molecule) (or molar volume, M/ρ (cm3 mol−1)); thus, permitting simple evaluation of standard entropies (J K−1 mol−1) at 298 K. The regression lines generally pass close to the origin, with formulae:For organic liquids:
  相似文献   

18.
The dynamic processes occurring in the triangular clusters [Re3(μ-H)3(μ-pz-κN1:κN2)(CO)10] (pz = pyrazolate, 4), [Re3(μ-H)2(μ-pydz-κN1:κN2)(CO)10] (pydz = pyridazine, 5) and [Re3(μ-H)3(μ-pydz-κN1:κN2)(CO)10] (6), have been investigated by 1H and 13C NMR. In the pyrazolate derivative 4 the exchange (k ≈ 1 s−1 at 320 K) between the two carbonyls in the trans-diaxial apical positions has been recognized, and its activation parameters, in C2D2Cl4, have been determined (Ea = 68(3) kJ mol−1). The exchange has been attributed to the rotation of the apical H2Re(CO)4 fragment with respect to the Re2(μ-pz) basal fragment, a process analogous to that previously observed in the unsaturated dianion [Re3(μ-H)3(CO)10] 2− (2) and in the monoanion [Re3(μ-H)3(μ-NC5H4-κN1:κC6)(CO)10] (1), containing a bridging orthometallated pyridine ligand. The vertex rotation was not observed in the pyridazine derivatives 5 and 6. An explanation for this different behaviour is presented, based on the view of the fluxional clusters 1, 2 and 4 as adducts between the apical and basal moieties (π- or σ-complexes). The ΔG#312K value here measured in acetone for the σ-complex 4 (77 kJ mol−1) is very similar to that previously determined for the other σ-complex 1 (ΔG#305K = 76 kJ mol-1) and significantly higher than the values measured for the π-complex 2 (ΔG#260K = 60 kJ mol−1). The di-hydrido derivative 5 shows a different much faster dynamic process, namely the hopping of one hydride between the two lateral edges, affording a pseudo Cs symmetry in the molecule. The process has been monitored by both 1H and 13C analysis, affording quite similar activation parameters (Ea = 44(1) and 45(1) kJ mol−1, respectively, in THF-d8), that did not significantly change in CD2Cl2 solution, in agreement with an intramolecular process.  相似文献   

19.
20.
A set of multidentate ligands have been synthesized and used to stabilize the putative highly electrophilic zinc species initiating ring-opening polymerization (ROP) of cyclohexene oxide (CHO) and propylene oxide (PO). Reaction of the bidentate C2-chiral bis(oxazoline) ligand (R2,R3BOX: R2 = (4S)-tBu, R3 = H (a); R2 = (4S)-Ph, R3 = H (b); R2 = (4R)-Ph, R3 = (5S)-Ph (c)) with Zn(R1)2 (R1 = Et (1), Me (2)) led to the heteroleptic three-coordinate complexes (R2,R3BOX)ZnR1, 1a-c and 2a, which were isolated in 92-96% yield. Next, two pyridinyl-functionalized N-heterocyclic carbene (NHC) ligands have been designed and synthesized: the 1,3-bis(2-pyridylmethyl)imidazolinium salt (d) and the protected NHC adduct 2-(2,3,4,5,6-pentafluorophenyl)-1,3-bis(2-pyridylmethyl)imidazolidine (e). The reaction of ligands d and e with ZnEt2 led directly to the formation of (NHC)ZnEt(Cl) 3d complex with ethane elimination and the adduct (NHC-C6F5(H))ZnEt24e, respectively, in high yield. In situ combinations of selected complexes 1a-c, 3d and 4e with B(C6F5)3 (1 or 2 equivalents) give active systems for ROP, with high productivity (3.3-5.9 106 gpolym. molZn−1 h−1) and high molecular weight (Mn up to 132 103 g mol−1) for CHO polymerization. Although the in situ B(C6F5)3-activated zinc species were not isolated, the sterically demanding BOX ligands (1c > 1b > 1a) and functionalized NHC ligands seem to enhance the stability of highly electrophilic zinc complexes over ligand redistribution, allowing a better control of the cationic ROP as reflected particularly for 3d and 4e complexes by their respective efficiency (42-88%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号