首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
PLA and its nanocomposite films based on modified montmorillonite (CLO30B) or fluorohectorite (SOM MEE) and unmodified sepiolite (SEPS9) were processed at a clay loading of 5 wt% and hydrolytically degraded at 37 and 58 °C in a pH 7.0 phosphate-buffered solution. An effective hydrolytic degradation for neat PLA and nanocomposites was obtained at both temperatures of degradation, with higher extent at 58 °C due to more extensive micro-structural changes and molecular rearrangements, allowing a higher water absorption into the polymer matrix.The addition of CLO30B and SEPS9 delayed the degradation of PLA at 37 °C due to their inducing PLA crystallization effect and/or to their high water uptake reducing the amount of water available for polymer matrix hydrolysis. The presence of SOM MEE also induced polymer crystallization, but it was also found to catalyze hydrolysis of PLA. Concerning hydrolysis at 58 °C, the presence of any nanoparticle did not significantly affect the degradation trend of PLA, achieving similar molecular weight decreases for all the studied materials. This was related to the easy access of water molecules to the bulk material at this temperature, minimizing the effect of polymer crystallinity clay nature and aspect ratio on the polymer degradation.  相似文献   

2.
PLA and PCL based nanocomposites prepared by adding three different types of fumed silica were obtained by melt blending. Materials were characterized by means of Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Dynamic–Mechanical Thermal Analysis (DMTA).A good distribution of the fumed silica into both polymer matrices was observed. The highest thermo-mechanical improvements were reached by addition of the fumed silica with higher surface area. PLA and its nanocomposites were degraded in compost at 58 °C; at this temperature all samples presented a significant level of polymer degradation, but a certain protection action of silica towards PLA degradation was observed, whereas the addition of fumed silica did not show considerable influence on the degradation trend of PCL. These dissimilarities were attributed to the different degradation mechanism of the two polymers.  相似文献   

3.
The morphology and thermal stability of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blend nanocomposites with small amounts of TiO2 nanoparticles were investigated. The nanoparticles were mostly located in the PLA phase, with good dispersion of individual particles, although significant aggregation was also visible. The thermal stability and degradation behaviour of the different samples were studied using thermogravimetric analysis (TGA) and TGA-Fourier-transform infrared (FTIR) spectroscopy. Neat PCL showed better thermal stability than PLA, but the degradation kinetics revealed that PLA had a higher activation energy of degradation than PCL, indicating its degradation rate more strongly depends on temperature, probably because of a more complex degradation mechanism based on chain scission and re-formation. Blending of PLA and PCL reduced the thermal stabilities of both polymers, but the presence of TiO2 nanoparticles improved their thermal stability. The nanoparticles also influenced the volatilization of the degradation products from the blend, acted as degradation catalyst and/or retarded the escape of volatile degradation products.  相似文献   

4.
Photochemical transformations of photoactive diketone derivatives, 1,2-diphenylethane-1,2-dione (benzil, BZ) and 1,4-bis(benzoylcarbonyl)benzene (bisbenzil, BIS), and the effects of their transformations on changes in the molecular characteristics and hydrolytic properties of poly(ε-caprolactone) (PCL) and polylactide (PLA) matrices are reported. Studies were performed in a broad dopant concentration range of 0.2–7.5 wt%. Structural changes were observed by FTIR spectroscopy. FTIR spectroscopy proved the progressive transformation of BZ to benzoyl peroxides and, in the case of PCL, the formation of polar groups. Changes in molecular characteristics were observed in GPC traces. Irradiation of the doped polymer films at λ > 400 nm under an air atmosphere resulted mainly in the degradation of the polymer matrices. Additionally, high dopant concentrations in PCL led to partially crosslinked structures with gel contents up to 15%. The photochemical transformation of dopants had a large impact on the PCL matrices compared to that of the PLA matrices. A subsequent hydrolysis process was investigated by determining the extractable products as well as using GPC. Hydrolysis of irradiated PCL samples showed a significant acceleration of hydrolysis compared to that of nonirradiated samples. Furthermore, the hydrolysis rate gradually increased with increasing dopant concentration. The PCL crosslinking and degradation is adjustable by the type of dopant, concentration of dopant and intensity of light during irradiation of PCL. In contrast, a photochemical pretreatment had no observable effect on the hydrolysis of PLA under the investigated conditions.  相似文献   

5.
Poly(lactic acid) (PLA)/poly(?-caprolactone) (PCL)/nano-silica composite degradable films were prepared by a solvent casting method. SEM results showed that the nano-silica particles were dispersed uniformly in the PLA/PCL matrix. TGA results indicated that the thermal decomposition temperature rose with the increase of nano-silica content. The tensile strength of the composites was enhanced with the increase of nano-silica content up to 2%. The tensile strength increased with the silica content and reached its maximum (22.51 Mpa). The improvement in the water uptake ratio in the PLA/PCL/silica nanocomposites may be attributable to the presence of silica nanoparticles in the PLA/PCL matrix. After 15 weeks total processing time for the solution of alkaline and phosphate buffer, the performances of 16.23% and 3.65% for degradation.  相似文献   

6.
Biodegradation of poly(lactic acid) and its nanocomposites   总被引:2,自引:0,他引:2  
PLA nanocomposites based on organically modified montmorillonites at 5% w/w loading were prepared by melt blending using an internal mixer and then degraded in a commercial compost. The addition of nanoclays was found to increase the PLA degradation rate, especially for the highest dispersed clay in the polymer matrix. Biodegradation by microorganisms isolated from the compost showed the bacterium Bacillus licheniformis as one of the responsible for PLA biodegradation in compost. It was also found that clays can influence the polymer bacterial degradation depending on their chemical structure and affinity of the bacterium towards the clay.  相似文献   

7.
Summary: The thermal degradation behavior of poly(ε-caprolactone) (PCL) and poly(L-lactic acid) (PLA) have been studied in different environment. It was found that these polymers undergo completely different degradation processes in nitrogen and oxygen atmosphere. In oxygen environment PCL and PLA mainly decompose to CO2, CO, water and short-chain acids. In nitrogen atmosphere PCL releases 5-hexenioc acid, CO2, CO and ε-caprolactone, whereas PLA decomposes to acetaldehyde, CO2, CO and lactide. The polymer blends of poly(3-hydroxybutyrate) (PHB) with PCL and PLA decompose similar to the individual homopolymers with crotonic acid as the initial decomposition product of PHB.  相似文献   

8.
In this study, maleic-anhydride-grafted polylactide (PLA-g-MA) was investigated as a potential compatibilizing agent for the polylactide (PLA)/poly(ε-caprolactone) (PCL) system, with the aim of enhancing the final properties of the two polymer blends. Indeed, PLA-g-MA was prepared via reactive blending through a free radical process and characterized by means of 1H-NMR and titration measurements, which demonstrated that the employed procedure allows grafting 0.7 wt% of MA onto the polymer backbone, while avoiding a dramatic reduction of PLA molecular mass. The specific effect of the MA-grafted PLA on the features of the PLA/PCL system was highlighted by adding different amounts of PLA-g-MA to 70:30 (w/w) PLA/PCL blends, where the 70 % PLA component was progressively substituted by its maleated modification. The efficiency of PLA-g-MA as a compatibilizer for the PLA/PCL blends was assessed through SEM analysis, which showed that the dimensions of PCL domains decrease and their adhesion to PLA improves by increasing the amount of PLA-g-MA in the blends. The peculiar microstructure promoted by the presence of PLA-g-MA was found to enhance the mechanical properties of the blend, improving the elongation at break without decreasing its Young’s modulus. Our study demonstrated that not only the microstructure but also the thermal properties of the blends were significantly affected by the replacement of PLA with PLA-g-MA.  相似文献   

9.
A series of copolymers were prepared by ring-opening polymerization of ?-caprolactone and dl-lactide, using zinc lactate as catalyst. The resulting PCL/PLA copolymers were characterized by various analytical techniques such as NMR, SEC, DSC and X-ray diffraction. The [CL]/[LA] ratios of the copolymers are very close to those in the feed, indicating a good conversion of monomers. The copolymers with CL contents higher than 50% appear semi-crystalline, the crystalline structure being of the PCL-type. Compression moulded polymer films were allowed to degrade in a pH = 7.6 phosphate buffer containing Pseudomonas lipase. Data show that copolymers with CL contents lower than 25% are not degradable and the degradation rate increases with CL content for CL-rich copolymers. Various soluble degradation products are detected in the degradation medium, including CL1 to CL3 and LA1 to LA4 homo-oligomers, and CL2LA1 co-oligomer. The presence of LA homo-oligomers and CL2LA1 co-oligomer suggests that Pseudomonas lipase can not only degrade PCL but also LA short blocks along PCL/PLA copolymer chains. On the other hand, little changes of composition are detected during degradation, in agreement with a surface erosion mechanism as shown by ESEM.  相似文献   

10.
This paper reports on the thermal degradation behaviour and kinetics of halloysite nanotubes containing microfibrillated poly(ε-caprolactone) (PCL)/poly(lactic acid) (PLA) blends. It was found that the nanotubes probably catalyzed the PLA degradation, and that the free radicals formed during the PLA degradation initiated PCL degradation at lower temperatures, maybe in combination with halloysite nanotubes (HNT) catalysis. Drawing to form microfibrillated nanocomposites had little influence on the degradation behaviour of these materials, but pre-mixing of the HNT with PLA or PCL prior to melt-mixing and extrusion-drawing of the blends did influence the degradation behaviour, but in different ways. No evidence could be found that the presence and amount of HNT, or the mode of preparation, had an influence on the degradation mechanism, as evidenced through a Fourier-transform infrared (FTIR) analysis of the degradation products.  相似文献   

11.
Polymeric scaffolds play a crucial role in engineering process of new tissues and effect the cell growth and viability. PLCL copolymers are found to be very useful during cell growth due to their elastic behavior and mechanical strength. Thus, low molecular weight PLCL copolymers of various ratios viz. PLCL(90/10), PLCL(75/25), PLCL(50/50) and PCL were synthesized by ring opening polymerization using stannous octoate as a catalyst. Synthesized polymers were characterized by GPC, 1H‐NMR, FTIR and XRD. The thermal properties of the copolymers were studied using TGA and DSC. Microspheres of about 100 μm diameter were prepared for different copolymers and their in vitro degradation behaviors were studied up to 108 days. It was observed that degradation of PLA content in polymer backbone occurs faster than PCL component which is also indicated by corresponding change in ratios of PLA/PCL, as determined by 1H‐NMR. SEM images of microspheres depicted the surface morphology during degradation and suggested the faster degradation for PLCL (50:50). Copolymers of different thermal, mechanical properties and different degradation behaviors can be prepared by adjusting the composition of copolymers. Various synthesized polymers from this work have been tested in our laboratory as polymeric scaffold for soft tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2755–2764, 2007  相似文献   

12.
Antimicrobial active films based on poly(lactic acid) (PLA) were prepared with poly(ε‐caprolactone) (PCL) and thymol (0, 3, 6, 9, and 12 wt%) by solvent casting methods. The films were characterized by thermal, structural, mechanical, gas barrier, and antimicrobial properties. Scanning electron microscopy analysis revealed that the surface of film became rougher with certain porosity when thymol was incorporated into the PLA/PCL blends. Thymol acted as plasticizers, which reduce the intermolecular forces of polymer chains, thus improving the flexibility and extensibility of the films. The addition of PCL into the pure PLA film decreased the glass transition temperature of the films. The presence of thymol decreased the crystallinity of PLA phase, but did not affect the thermal stability of films. Water vapor barrier properties of films slightly decreased with the increase of thymol loading. The antimicrobial properties of thymol containing films showed a significant activity against Escherichia coli and Listeria monocytogenes. The results indicated the potential of PLA/PCL/thymol composites for applications in antimicrobial packaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The thermal degradation/modification dynamics of poly(-caprolactone) (PCL) was investigated in a thermogravimetric analyzer under non-isothermal and isothermal conditions. The time evolution of the molecular weight distribution during degradation was studied using gel permeation chromatography. Experimental molecular weight evolution and weight loss profile were modeled using continuous distribution kinetics. The degradation exhibited distinctly different behavior under non-isothermal and isothermal heating. Under non-isothermal heating, the mass of the polymer remained constant at initial stages with rapid degradation at longer times. The Friedman and Chang methods of analysis showed a 3-fold change (from 18 to 55–62 kcal mol−1) in the activation energy from low temperatures to high temperatures during degradation. This suggested the governing mechanism changes during degradation and was explained using two parallel mechanisms (random chain scission and specific chain end scission) without invoking the sequential reaction mechanisms. Under isothermal heating, the polymer degraded by pure unzipping of specific products from the chain end.  相似文献   

14.
A highly sensitive analytical method for evaluation of poly(L-lactide) (PLA), poly(epsilon-caprolactone) (PCL), poly(beta-hydroxybutyrate) (PHB), and poly(butylene succinate) (PBS) degradability was developed using coated cellulose paper, prepared by penetration and adhesion of these plastics into/onto the cellulose paper. Enzymatic degradability of the obtained plastic coated papers was evaluated using various commercial proteases and lipases. PLA coated paper was highly susceptible to subtilisin and mammalian enzymes, alpha-chymotrypsin, elastase and trypsin. To our knowledge, this is the first report on the degradation of PLA coated paper using subtilisin and mammalian enzymes. Almost all lipase preparations degraded PCL and PHB coated papers but not PBS coated paper. The biodegradability of plastic coated paper was greater than that of plastic powder. The penetration of plastic into cellulose paper by coating improved the plastic degradability, and can be regulated easily.  相似文献   

15.
Aliphatic polyesters, especially those derived from lactide (PLA), glycolide (PGA) and ε-caprolactone (PCL), are being investigated worldwide for applications in the field of surgery (suture material, devices for internal bone fracture fixation), pharmacology (sustained drug delivery systems), and tissue engineering (scaffold for tissue regeneration) [1,2]. This is mainly due to their good biocompatibility and variable degradability. These polymers present also a growing interest for environmental applications in agriculture (mulch films) and in our everyday life (packaging material)as the development of biodegradable materials is now considered as one of the potential solutions to the problem of plastic waste management.For both biomedical and environmental applications, it is of major importance to understand the degradation characteristics of the polymers. The hydrolytic degradation of aliphatic polyesters has been investigated by many research groups. Our group has shown that degradation of PLAGA large size devices is faster inside than at the surface. This heterogeneous degradation is due to the autocatalytic effect of carboxylic endgroups formed by ester bond cleavage. Moreover,degradation-induced morphological and compositional changes were also elucidated. In the case of PCL, the hydrolytic degradation is very slow due to its hydrophobicity and crystallinity.The enzymatic degradation of these polymers has been investigated by a number of authors. A specific enzyme, proteinase K, has been shown to have significant effects on PLA degradation. This enzyme preferentially degrade L-lactate units as opposed to D-lactate ones, amorphous zones as opposed to crystalline ones [3]. The enzymatic degradation of PCL polymers has also been investigated. A number of lipase-type enzymes were found to significantly accelerate the degradation of PCL despite its high crystallinity. In the case of PLA/PCL blends, the two components exhibited well separated crystalline domains. The selective degradation of PCL or PLA components by enzymes revealed the inner morphology of the blends with formation of microsphere-like or island-like structures [5].  相似文献   

16.
Polylactide (PLA) composites based on intumescent flame-retardant (IFR) and organo-modified sepiolite (OSEP) were prepared via direct melt compounding. The uniform dispersion of OSEP in the PLA matrix was observed by TEM, but some agglomerates still existed at the high loading. Tensile results showed that high loading of the conventional IFR led to a reduction in tensile strength of PLA composites; however, replacing a portion of the IFR with modified sepiolite in the PLA matrix improved this result. The thermal degradation temperature of the PLA/IFR/OSEP composites determined by thermogravimetric analysis was lower than that of neat PLA, as a consequence of the catalyzed carbonization induced by the addition of IFR and OSEP. The formulation with 13 mass% IFR and 2 mass% OSEP exhibited the highest LOI value of 32 vol% and also reached UL-94 V-0 rating in the vertical burning tests. Furthermore, the co-addition of IFR and OSEP gave rise to a significant reduction in peak heat release rate (PHRR) and total heat release (THR) of PLA composites during combustion, particularly in the case of PLA/IFR13/OSEP2 (82% reduction in PHRR and 69% in THR). The excellent fire resistance of PLA/IFR13/OSEP2 could be attributed to that IFR catalyzed carbonization of PLA to form the char, while OSEP resulted in further stabilization in the charred layers.  相似文献   

17.

A variety of poly(lactic acid) (PLA)-poly(ε-caprolactone) (PCL) samples with different PLA:PCL ratios, containing different contents of graphite nanoplatelets (GrP), were analysed in a thermogravimetric analyser (TG) under, respectively, nitrogen and oxygen atmospheres, and in a differential scanning calorimeter (DSC) in a nitrogen atmosphere. Their respective morphologies were determined through scanning electron microscopy. The TG analyses in nitrogen gave fairly predictable results, but the analyses in oxygen gave complex results that seemed to be dependent on the respective morphologies of the blend samples and on the presence and amount of GrP in the respective samples. It was observed that, depending on the blend or nanocomposite morphologies, the GrP could have played the role of catalysing the degradation process, or inhibiting the onset of degradation by immobilizing the polymer or free radical chains and by delaying the evolution of the degradation products from the respective samples. The DSC results clearly showed the influence of the respective components in the blends and composites on the crystallization behaviour and crystallinities of the two polymers.

  相似文献   

18.
In this study, the effects of epoxidized palm oil (EPO) on the mechanical and morphological properties of a blend of two types of biodegradable polymer, poly(lactic acid) (PLA) and polycaprolactone (PCL), were investigated. The solution-casting process, with chloroform as a solvent, was used to prepare samples. Addition of EPO reduced the tensile strength and modulus but increased elongation at break for the PLA–PCL blend. The highest elongation at break was observed for the blend with 10 % (w/w) EPO content. Scanning electron microscopy (SEM) indicated that the fractured surface morphology of the PLA–PCL blend became more stretched and homogeneous in PLA–PCL–EPO. Possible interactions between the PLA–PCL blend and EPO were also characterized by use of Fourier-transform infrared (FTIR) spectroscopy. Thermal stability was studied by differential scanning calorimetry and thermogravimetric analysis. The results from FTIR and SEM revealed that the miscibility of the PLA–PCL blend was improved by addition of EPO.  相似文献   

19.
The methods for producing reference test materials for biodegradation evaluation tests have been studied. Mechanical crushing at low temperature of polymer pellets using dry ice was selected for the method of producing polymer powder of poly(lactic acid) (PLA). The powders were fractionated using 60 mesh (250 μm) and 120 mesh (125 μm) sieves. The size distributions were then measured. The average diameter of the PLA particles obtained by this method was 214.2 μm. The biodegradation speeds of these PLA polymer powders were evaluated by two methods based on the international standard and one in vitro method based on the enzymatic degradation. First, the degree of biodegradation for this PLA powder was 91% for 35 days in a controlled compost determined by a method based on ISO 14855-1 (JIS K6953) at 58 °C managed by the Mitsui Chemical Analysis and Consulting Service, Inc. (Japan). Second, these polymer powders were measured for biodegradation by the Microbial Oxidative Degradation Analyzer (MODA) in a controlled compost at 58 °C and 70 °C based on ISO/DIS 14855-2 under many conditions. The degree of biodegradation for this PLA powder was approximately 80% for 50 days. In addition, the polymer powders were biodegraded by Proteinase K which is a PLA degradation enzyme. This polymer powder was suitable as a reference material for the evaluation methods of biodegradation.  相似文献   

20.
Polylactide (PLA) crosslinked by using both triallyl isocyanurate (TAIC) and electron radiation or using dicumyl peroxide (DCP) was studied with the aim of examining the behaviour of the modified polymer under various environmental conditions. Thus, the polymer samples were subjected to composting in an industrial pile, exposed to proteinase K, or incubated in sea water. The number-average molecular weight (Mn), melt flow index (MFI), crystallinity (χ), tensile strength (σM) and mass loss (in the case of samples treated with proteinase K) were determined. It was found that neat PLA irradiated with high-energy electrons underwent degradation that increased during composting. As a result, the value of Mn of this polymer dramatically decreased. It appeared that PLA crosslinked with TAIC and electron radiation contained, in addition to the crosslinked phase, a phase strongly degraded by this radiation, which facilitated hydrolytic degradation during composting. The σM value of PLA crosslinked with TAIC and electron radiation rapidly decreased during composting, whereas that of PLA crosslinked chemically and composted for three weeks slightly increased. As the electron radiation dose increased, the mass loss of PLA containing TAIC and treated with proteinase K decreased, which indicated that the physical crosslinking of PLA hindered enzymatic degradation of this polymer. Important changes in both neat and physically crosslinked PLA incubated in sea water for nine weeks were not detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号