共查询到20条相似文献,搜索用时 15 毫秒
1.
Boris Jaffrennou Françoise Méchin Jean-Pierre Pascault 《European Polymer Journal》2008,44(11):3439-3455
Poly[Styrene-b-Butadiene-b-(Methyl Methacrylate)], SBM triblock copolymers have been incorporated in different polyurethane, PU formulations in order to prepare nanostructured materials. Macrodiols used for PU synthesis were based on a central bis-phenol A, BPA unit with two hydroxyl-terminated oligo(oxypropylene), BPA-POx or oligo(oxyethylene), BPA-EO chains with varying lengths. The initial solubility of the three blocks and the rheological behavior of the solutions in macrodiols and also in two diisocyanates, isophorone diisocyanate, IPDI, and 1,3-xylylene diisocyanate, XDI have been first characterized. The PMMA block is the most soluble and its role during the reaction is to stabilize the initial nanostructure or to control the reaction-induced microphase separation.Block copolymers can be dissolved first in the macrodiol, or preferably in the diisocyanate. With BPA-POx and low SBM content (<10 wt%), transparent linear or crosslinked PU with well dispersed triblock nanoparticles have been prepared, depending on the molar mass of the macrodiol and on the concentration of diblock SB impurities present in the triblock. For high SBM concentrations (>50 wt%), a twin screw extruder had to be used for the blending. Under well-defined conditions, transparent linear PUs and linear segmented polyurethane-ureas have been prepared.This study confirms that for designing a nanostructured material from a reactive mixture with a triblock additive, one block, called “the nanostructuring block” has to remain soluble up to the end of the reaction. 相似文献
2.
Hans R. Kricheldorf Majdi Al Masri 《Journal of polymer science. Part A, Polymer chemistry》1995,33(15):2667-2671
Attempts were made to synthesize poly(ether-sulfone)s from aliphatic diols or bissilylated diols on the one hand, and 4,4′-dichlorodiphenylsulfone or 4,4′-difluorodiphenylsulfone on the other hand. The reaction conditions and the catalyst were varied. Polycondensations of silylated diols with 4,4′-difluorodiphenylsulfone and powdered K2 CO3 in N-methylpyr-rolidone proved to give the best results. Using silylated isosorbide and isomannide as mono-mers chiral poly(ether-sulfone)s were prepared. GPC measurements indicate weight-average molecular weights in the range of 27×103–200×103. © 1995 John Wiley & Sons, Inc. 相似文献
3.
采用溶剂热法和直接混合法合成了3种金属有机骨架材料(Zn-MOFs),研究了其在碳酸乙烯酯(EC)与丁二酸二甲酯(DMSu)耦合反应制聚丁二酸乙二醇酯(PES)和碳酸二甲酯(DMC)反应中的催化性能,并对工艺条件进行了考察.采用X射线粉末衍射法(XRD),扫描电子显微镜(SEM),傅里叶转化红外光谱法(FTIR)和原子发射光谱法(ICP-AES)对Zn-MOFs进行了表征,对聚合物PES进行了FTIR和核磁共振(~1HNMR和~(13)C-NMR)测试.结果表明,既具有MOF-5结构,又含有较多Zn O的纳米Zn-MOF-L催化活性最好.在Zn-MOF-L催化下,最优反应条件如下:预缩聚反应温度215℃,预缩聚反应时间4 h,缩聚反应温度220℃,缩聚压力小于300 Pa,n(EC)/n(DMSu)=2,催化剂用量为1 wt%.最优反应条件下,DMC的收率可达到65.08%,PES的特性黏数[η]可达到0.572 d L/g,数均相对分子质量M_n为2.1×104,相对分子质量分布PDI为2.21. 相似文献
4.
ZHANG Dan JIA Shu-yong WANG Yue YAO Jie WANG Gong-ying 《高等学校化学研究》2007,23(2):173-175
IntroductionDimethyl carbonate(DMC) is known to be a novelbuilding block in organic synthesis. As an environmen-tally benign compound and a unique intermediate,DMC has attracted much attention[1,2]. Among the va-rious methods for synthesizing DMC, the tra… 相似文献
5.
Influence of the soft segment length on the properties of water‐cured poly(carbonate‐urethane‐urea)s 下载免费PDF全文
Magdalena M. Mazurek Karolina Tomczyk Monika Auguścik Joanna Ryszkowska Gabriel Rokicki 《先进技术聚合物》2015,26(1):57-67
Poly(carbonate‐urethane‐urea)s (PCUU) based on oligocarbonate diols (Mn ≈ 2000) with different length of the hydrocarbon chain as soft segments were synthesized and investigated. Carbonate oligomerols were obtained in a two‐step method from dimethyl carbonate (DMC) and linear α,ω‐diols (1,4‐butanediol, 1,5‐pentanediol, 1,6‐hexanediol, 1,9‐nonanediol, 1,10‐dekanediol and 1,12‐dodecanediol). Oligo(trimethylene carbonate) diol was synthesized using ring‐opening polymerization of trimethylence carbonate. PCUUs were obtained by prepolymer method using isophorone diisocyanate (IPDI) and water as a chain extender. Changes in polymers properties with increase of methylene group number between carbonate linkages were investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), tensile strength and hardness measurements. The thermal stability was also analyzed by means of thermogravimetric analysis (TGA). Based on FTIR analysis influence of methylene groups number between carbonate linkages on phase separation and concentration of allophanate and biuret groups in the samples were investigated. The obtained poly(carbonate‐urethane‐urea)s exhibited very good mechanical properties. Tensile strength and elongation at break were 40 MPa and 400–600%, respectively, depending on the oligocarbonate used. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
Li Wang Chaoyang YePuyu Zhang Jie PanLinxian Feng Sufen WangTuzhi Peng 《European Polymer Journal》2002,38(3):531-535
Poly(ferrocenyldimethylsilane) and poly(ferrocenylmethylphenylsilane) have been prepared via the thermal ring-opening polymerization of the corresponding strained, silicon-bridged ferrocenophanes. It was found that the molecular weights of resultant polymers depend on the polymerization time. Their electrochemical behavior in aqueous electrolytes was investigated by cyclic voltammetry. 相似文献
7.
Dongdan CaiJianfeng Su Mei HuangYanhua Liu Jianjun WangLixing Dai 《Polymer Degradation and Stability》2011,96(12):2174-2180
A series of new poly (amic acid) ammonium salt (PAAS) precursors were prepared by incorporating different amounts of triethylamine (TEA) into terpolymer polyamic acid (PAA), which was synthesized by pyromellitic dianhydride (PMDA), 4,4’-oxydianiline (ODA) and p-phenylenediamine (PDA) in dimethylacetamide (DMAc). Then, the PAAS films were made by casting their solutions onto glass plates followed by the evaporation of the solvent. The chemical structure of PAAS films was confirmed by 1H NMR and FTIR spectroscopy. Mechanical properties, intrinsic viscosities and solubility of PAAS precursors were examined, respectively. It was found that the intrinsic viscosity of PAA solution obviously decreased with storage time during 30 days, while no distinct changes were observed in the intrinsic viscosity of the PAAS (the mole ratio of TEA/repeating unit of PAA = 2/1) solution after 90 days. The results suggested that hydrolytic stability of the PAAS films was significantly improved as compared with that of PAA film due to the polyelectrolyte structure of PAAS. Moreover, the thermal and mechanical properties of polyimide (PI) films prepared from PAAS precursors were also investigated, respectively. 相似文献
8.
Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide),PEG-b-(PNIPAM)_2,were successfully synthesized through atom transfer radical polymerization(ATRP).A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether(PEG).The copolymers were obtained via the ATRP of N-isopropylacrylamide(NIPAM) at 30℃with CuCl/Me_6TREN as a catalyst system and DMF/H_2O(v/v = 3:1) mixture as solvent.The resulting copo... 相似文献
9.
Poly(propylene carbonate)(PPC) was melt blended in a batch mixer with poly(butylene carbonate)(PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibility. DMA results showed that the PPC/PBC blends were an immiscible two-phase system. With the increase in PBC content, the PPC/PBC blends showed decreased tensile strength, however, the elongation at break was increased to 230% for the 50/50 PPC/PBC blend. From the tensile strength experiments, the Pukanszky model gave credit to the modest interfacial adhesion between PPC and PBC, although PPC/PBC was immscible. The impact strength increased significantly which indicated the toughening effects of the PBC on PPC. SEM examination showed that cavitation and shear yielding were the major toughening mechanisms in the blends subjected the impact tests. TGA measurements showed that the thermal stability of PPC decreased with the incorporation of PBC. Rheological investigation demonstrated that the addition of PBC reduced the value of storage modulus, loss modulus and complex viscosity of the PPC/PBC blends to some extent. Moreover, the addition of PBC was found to increase the processability of PPC in extrusion. The introduction of PBC provided an efficient and novel toughened method to extend the application area of PPC. 相似文献
10.
A carbon dioxide copolymer poly(urethane-amine)(PUA) was blended with poly(propylene carbonate)(PPC) in order to improve the toughness and flexibility of PPC without sacrificing other mechanical properties. Compared with pure PPC, the PPC/PUA blend with 5 wt% PUA loading showed a 400% increase in elongation at break, whilst the corresponding yielding strength remained as high as 33.5 MPa and Young's modulus showed slightly decrease. The intermolecular hydrogen bonding interaction in PPC/PUA blends was comfirmed by FTIR, 2D IR and XPS spectra analysis, and finely dispersed particulate structure of PUA in PPC was observed in the SEM images, which provided good evidence for the toughening mechanism of PPC. 相似文献
11.
In two hydrolytic degradation studies the tensile (mechanical) and functional (thermo-mechanical) properties of a hydrolysis-stabilized shape memory poly(ester urethane) and its non-stabilized analog were investigated. Hydrolytic degradation was enforced by specimen immersion in de-ionized water at 80 °C. Significant differences in the fundamental shape memory parameters were monitored as function of aging time for the stabilized and non-stabilized polymer. This included the ability to recover strain (shape recoverability) and stress (stress recoverability) on heating after shape programming. Hydrolysis-related mechanical and functional changes were correlated with morphological ones, detected by differential scanning calorimetry (DSC). The shape memory poly(ester urethane), which was protected by a carbodiimide-based hydrolysis stabilizer, revealed significantly improved resistance towards hydrolysis with respect to various mechanical and shape memory parameters. 相似文献
12.
A series of novel poly(urethane-urea)(PUU) was synthesized from poly(lactide-co-p-dioxanone) macrodiol(HO-P(LA-co-PDO)-OH), hexamethylene diisocyanate(HDI) and butanediamine(BDA).The obtained PUU,which is recorded as P(LA-co-PDO)-PUU here,may demonstrate enhanced phase separation and thus improved shape memory property.FTIR was employed to characterize the copolymers,and the effects of NCO/OH molar ratios on T_g of PUU was investigated by means of differential scanning calorimetry (DSC).The results revealed the successful synthesis of P(LA-co-PDO)-PUU.In addition,the T_g of P(LA-co-PDO)-PUU increased from 37.9℃to 44.2℃with the increase NCO/OH ratios from 1.1 to 1.2.The P(LA-co-PDO)-PUU with T_g close to body temperature will have potential applications as shape memory polymers in biomedical fields,especially in minimally invasive surgery. 相似文献
13.
To assess the compatibility of blends of synthetic poly(propylene carbonate) (PPC), with a natural bacterial poly(3-hydroxybutyrate) (PHB), a simple casting procedure of blend was used. poly(3-hydroxybutyrate)/poly(propylene carbonate) blends are found to be incompatible according to DSC and DMA analysis. In order to improve the compatibility and mechanical properties of PHB/PPC blends, poly(vinyl acetate) (PVAc) was added as a compatibilizer. The effects of PVAc on the thermal behavior, morphology, and mechanical properties of 70PHB/30PPC blend were investigated. The results show that the melting point and the crystallization temperature of PHB in blends decrease with the increase of PVAc content in blends, the loss factor changes from two separate peaks of 70PHB/30PPC blend to one peak of 70PHB/30PPC/12PVAc blend. It is also found that adding PVAc into 70PHB/30PPC blend can decrease the size of dispersed phase from morphology analysis. The result of tensile properties shows that PVAc can increase the tensile strength and Young’s modulus of 70PHB/30PPC blend, and both the elongation at break and the tensile toughness increase significantly with PVAc added into 70PHB/30PPC. 相似文献
14.
A series of new poly(amine-hydrazide)s I were prepared from the dicarboxylic acid 4,4′-dicarboxy-4″-methyltriphenylamine with terephthalic dihydrazide (TPH) and isophthalic dihydrazide (IPH), respectively, via the Yamazaki phosphorylation reaction. Polymers I were readily soluble in many common organic solvents, and could be solution cast into transparent, tough, and flexible films with good mechanical properties. Differential scanning calorimetry (DSC) indicated that the hydrazide polymers had Tg’s in the range of 222-223 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300-400 °C. The resulting poly(amine-1,3,4-oxadiazole)s II exhibited Tg’s in the range of 269-283 °C, 10% weight-loss temperatures in excess of 511 °C, and char yield at 800 °C in nitrogen higher than 63%. These poly(amine-hydrazide)s I exhibited strong UV-Vis absorption bands at 351-355 nm in NMP solution. Their photoluminescence spectra in NMP solution and film showed maximum bands around 459-461 nm in the blue region for I series. The hole-transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine-hydrazide)s I prepared by casting polymer solution onto an indium-tin oxide (ITO)-coated glass substrate exhibited one reversible oxidation redox couples at 1.32-1.33 V vs. Ag/AgCl in acetonitrile solution. All obtained poly(amine-hydrazide)s I revealed excellent stability of electrochromic characteristics, changing color from original pale yellowish to blue. 相似文献
15.
Miscibility, isothermal crystallization kinetics, and morphology of poly(L-lactide)/poly(trimethylene carbonate)(PLLA/PTMC) crystalline/amorphous blends were studied by differential scanning calorimetry(DSC) and optical microscopy(OM). The heterogeneity of OM images and an unchanged glass transition temperature showed that PLLA was immiscible with PTMC. During isothermal crystallization, the crystallization rate of PLLA improved when the PTMC content was low(≤ 20%). However, when the PTMC content was high(≥ 30%), the crystallization rate decreased significantly. The reason of these nonlinear changes in crystal kinetics was analyzed according to the nucleation and growth process by virtue of a microscope heating stage. The isothermal crystallization morphologies of the blends were also studied by polarized optical microscopy and the results confirmed the conclusions obtained from crystallization kinetics. 相似文献
16.
Self-healing poly(urea-urethane)s (PUUs) showing a tolerance to mechanical damage are particularly desirable for high-performance elastomeric biomaterials. In this study a kind of biodegradable PUUs was synthesized from poly(ε-caprolactone) diol with L-lysine ethyl ester diisocyanate (LDI) extended with L-lysine ethyl ester dihydrochloride (LEED) in DMF and characterized by using 1H-NMR, FTIR, DSC, XRD, SEM and tensile tests. Interestingly, they exhibited a self-healing characteristic upon exposure to 37℃ for as short as 30 min with the tensile strength keeping at 4.23 MPa and the elongation at break reaching to 627%. It is revealed that increasing the hard segment content in PUUs benefits the self-healing performance, and on the opposite increasing the soft segment content contributes to the biodegradability. 相似文献
17.
Two new diacid monomers, 2,2′-sulfide bis(4-methyl phenoxy acetic acid) and 2,2′-sulfoxide bis(4-methyl phenoxy acetic acid) were successfully synthesized by refluxing the 2,2′-sulfide bis(4-methyl phenol) and 2,2′-sulfoxide bis(4-methyl phenol) with chloroacetonitrile in the presence of potassium carbonate, and subsequent basic reduction. Two novel series of poly(sulfide-ether-amide)s and poly(sulfoxide-ether-amide)s with aliphatic units in the main chain were prepared from diacids with various diamines.The polyamides were obtained in quantitative yields and their inherent viscosities were in the range of 0.43-0.89 dl g−1 at a concentration of 0.5 g dl−1 in N,N-dimethylacetamide (DMAc) solvent at 25 °C. They showed good thermal stability. The temperature for 10% weight loss in argon atmosphere was in the range of 350-415 °C. The polymers showed glass transition temperatures between 228 and 261 °C. Almost all of the polyamides were readily soluble in a variety of polar solvents such as N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO). 相似文献
18.
Series of PTT-b-PEO copolymers with different composition of rigid PTT and PEO flexible segments were synthesized from dimethyl terephthalate (DMT), 1,3-propanediol (PDO), poly(ethylene glycol) (PEG, Mn = 1000 g/mol) in a two stage process involving transesterification and polycondensation in the melt. The weight fraction of flexible segments was varied between 20 and 70 wt%. The molecular structure of synthesized copolymers was confirmed by 1H NMR and 13C NMR spectroscopy. The superstructure of these polymers was characterized by DSC, DMTA, WAXS and SAXS measurements. It was observed that domains of three types can exist in PTT-b-PEOT copolymers: semi-crystalline PTT, amorphous PEO rich phase (amorphous PEO/PTT blended phase) and semi-crystalline PEO phase. Semi-crystalline PEO phase was observed only at temperature below 0 °C for sample containing the highest concentration of PEO segment. The phase structure, thermal and mechanical properties are effected by copolymer composition. The copolymers containing 30÷70 wt% of PEO segment posses good thermoplastic elastomers properties with high thermal stability. Hardness and tensile strength rise with increase of PTT content in copolymers. 相似文献
19.
The conditions of synthesis of statistical poly(ethylene succinate-co-terephthalate) copolymers (2GTS) and high molecular weight poly(ethylene succinate) (PES) with good hydrolytic and optical parameters, designed for the production of biodegradable products and resins, are presented in this article. Copolymers were prepared by melt polycondensation of bis-(β-hydroxyethylene terephthalate) (BHET) and succinic acid (SA) with excess of ethylene glycol (2G) in the presence of a novel titanium/silicate catalyst (C-94) and catalytic grade of germanium dioxide (GeO2) as cocatalyst. The chemical structure and physical properties of those materials were characterized by 1H NMR, FT-IR, dynamical-mechanical thermal analyses (DMTA), differential scanning calorimetry (DSC), solution viscosity and spectroscopic methods. The hydrolytic degradation was performed in a water solution with variable pH, also in garden soil and in compost. The highest hydrolytic degradation rate was observed for pH 4 and for compost. Better hydrolytic degradation values in compost medium were observed for copolyester prepared in the presence of GeO2 as polycondensation cocatalyst. The copolyester with 40 mol% of aliphatic units was chosen for industrial syntheses which were performed in ELANA and subsequently the processing parameters and compatibility with potato starch of this polyester were checked by BIOP Biopolymer Technologies AG. 相似文献
20.
A simple non-isocyanate route is developed for synthesizing crystallizable aliphatic thermoplastic poly(ester urethane) elastomers(TPEURs) with good thermal and mechanical properties. Three prepolymers of1,6-bis(hydroxyethyloxycarbonylamino) hexane(BHCH), i.e. Pre PBHCHs, were prepared through the self-transurethane polycondensation of BHCH. A poly(butylene adipate) prepolymer(Pre PBA) with terminal HO― groups was prepared and used as a polyester glycol. A series of TPEURs were prepared by the co-polycondensation of the Pre PBHCHs with Pre PBA at 170 ℃ under a reduced pressure of 399 Pa. The TPEURs were characterized by gel permeation chromatography, FTIR,1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy, and tensile test. The TPEURs exhibited M_n up to 23300 g/mol, M_w up to 51100 g/mol, Tg ranging from-33.8 ℃ to-3.1 ℃, T_m from 94.3 ℃ to 111.9 ℃, initial decomposition temperature over 274.7 ℃, tensile strength up to18.8 MPa with a strain at break of 450.0%, and resilience up to 77.5%. TPU elastomers with good crystallization and mechanical properties were obtained through a non-isocyanate route. 相似文献