首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The CNO cycle contributes only a small fraction to the energy generated in the Sun but there’s still no experimental data on exactly how small this contribution is. After the results of Borexino experiment the CNO neutrinos it is the last missing chain to compose the total picture of the energy generation of the Sun. To get precision in the evaluation of the flux of pp-neutrinos one needs to measure the flux of CNO neutrinos. Then it will be possible to address the question on the presence of still unknown (hidden) sources of solar energy and/or on the presence of sterile neutrinos. The future experimental program to measure the effect from CNO neutrinos is discussed.  相似文献   

3.
The Earth effects on the energy spectra of supernova neutrinos are studied. We analyze numerically the time-integrated energy spectra of neutrino in a mantle–core–mantle step function model of the Earth's matter density profile. We consider a realistic frame-work in which there are three active neutrinos whose mass squared differences and mixings are constrained by the present understanding of solar and atmospheric neutrinos. We find that the energy spectra change for some allowed mixing parameters. Especially, the expected number of events at SNO shows characteristic behavior with respect to energy, i.e., a great dip and peak. We show that observations of the Earth effect allow us to identify the solar neutrino solution and to probe the mixing angle θ2.  相似文献   

4.
The standard Big Bang cosmology predicts that the universe is abundantly populated with neutrinos. As expected there are at least 114 neutrinos per cubic centimeter averaged over the whole space. Like the cosmic background radiation the cosmic neutrinos at present posses a very small kinetic energy due to expansion of the universe. This prediction is one of the cornerstones of modern cosmology. On the other hand the existence of cosmic neutrinos has not yet been confirmed by direct detection experiments. For now we only have a lower limit on the total mass of this free floating ghostly gas of neutrinos, but even so it is roughly equivalent to the total mass of all the visible stars in universe. There could be many more neutrinos at Earth because of condensation of neutrinos, now moving slowly under the gravitational pull of our galaxy. Here we discuss the possibility of detection of relic neutrinos in KATRIN and MARE experiments via neutrino capture on tritium and rhenium, respectively. We also examine single and double relic neutrino capture on double β-decaying nuclei which might be relevant in the context of the new generation double beta decay experiments. Further we explore feasibility of experiments for detection of heavy sterile neutrinos with masses in MeV region, which may have important astrophysical and cosmological implications.  相似文献   

5.
J G Learned 《Pramana》2000,55(1-2):3-18
With the announcement of new evidence for muon neutrino disappearance observed by the super-Kamiokande experiment, the more than a decade old atmospheric neutrino anomaly moved from a possible indication for neutrino oscillations to an apparently inescapable fact. The evidence is reviewed, and new indications are presented that the oscillations are probably between muon and tau neutrinos. Implications and future directions are discussed.  相似文献   

6.
Results for solar neutrino detection from the SuperKamiokande collaboration have been presented recently while those from the Sudbury Neutrino Observatory are expected in the near future. These experiments are sensitive to the8B neutrinos from the sun, the shape of whose spectrum is well-known but the normalization is less certain. We propose several variables, insensitive to the absolute flux of the incident beam, which probe the shape of the observed spectrum and can sensitively signal neutrino oscillations. They provide methods to extract the neutrino mixing angle and mass splitting from the data and also to distinguish oscillation to sequential neutrinos from those to a sterile neutrino.  相似文献   

7.
S. M. Bilenky  C. Giunti  W Grimus 《Pramana》1998,51(1-2):51-64
All the possible schemes of neutrino mixing with four massive neutrinos inspired by the existing experimental indications in favour of neutrino mixing are considered. It is shown that the scheme with a neutrino mass hierarchy is not compatible with the experimental results, likewise all other schemes with the masses of three neutrinos close together and the fourth mass separated by a gap needed to incorporate the LSND neutrino oscillations. Only two schemes with two pairs of neutrinos with close masses separated by this gap of the order of 1 eV are in agreement with the results of all experiments. We carefully examine the arguments leading to this conclusion and also discuss experimental consequences of the two favoured neutrino schemes.  相似文献   

8.
We investigate baryogenesis in the νMSM which is the Minimal Standard Model (MSM) extended by three right-handed neutrinos with Majorana masses being smaller than the weak scale. In this model three sterile neutrinos, which are almost right-handed states, play important roles in cosmology. The baryon asymmetry of the universe (BAU) is generated via mechanism through flavor oscillation between two sterile neutrinos N2 and N3 which are degenerate in masses. We consider the case when BAU is solely originated from the CP violating phases in the mixing matrix of active neutrinos, i.e., the Dirac phase δ and the Majorana phase η, and study how BAU depends on these CP violating phases.  相似文献   

9.
This is the report of neutrino and astroparticle physics working group at WHEPP-7. Discussions and work on CP violation in long baseline neutrino experiments, ultra high energy neutrinos, supernova neutrinos and water Cerenkov detectors are discussed.  相似文献   

10.
The mixing of neutrinos and quarks generate a vacuum condensate that, at the present epoch, behaves as a cosmological constant. The value of the dark energy is constrained today by the very small breaking of the Lorentz invariance.  相似文献   

11.
We propose a new solution to the origin of dark energy. We suggest that it was created dynamically from the condensate of a singlet neutrino at a late epoch of the early Universe through its effective self-interaction. This singlet neutrino is also the Dirac partner of one of the three observed neutrinos, hence dark energy is related to neutrino mass. The onset of this condensate formation in the early Universe is also related to matter density and offers an explanation of the coincidence problem of why dark energy (70%) and total matter (30%) are comparable at the present time. We demonstrate this idea in a model of neutrino mass with (right-handed) singlet neutrinos and a singlet scalar.  相似文献   

12.
An influence of a strong external magnetic field on the neutrino self-energy operator is investigated. The width of the neutrino decay into the electron and W boson, and the mean free path of an ultra-high energy neutrino in a strong magnetic field are calculated. A kind of energy cutoff for neutrinos propagating in a strong field is defined.  相似文献   

13.
The atomic ionization processes induced by scattering of neutrinos play key roles in the experimental searches for a neutrino magnetic moment. Current experiments with reactor (anti)neutrinos employ germanium detectors having energy threshold comparable to typical binding energies of atomic electrons, which fact must be taken into account in the interpretation of the data. Our theoretical analysis shows that the so-called stepping approximation to the neutrino-impact ionization is well applicable for the lowest bound Coulomb states, and it becomes exact in the semiclassical limit. Numerical evidence is presented using the Thomas-Fermi model for the germanium atom.  相似文献   

14.
Yosef Nir  Yael Shadmi 《Pramana》2004,63(6):1407-1416
We argue that neutrino flavor parameters may exhibit features that are very different from those of quarks and charged leptons. Specifically, within the Proggatt-Nielsen (FN) framework, charged fermion parameters depend on the ratio between two scales, while for neutrinos a third scale — that of lepton number breaking — is involved. Consequently, the selection rules for neutrinos may be different. In particular, if the scale of lepton number breaking is similar to the scale of horizontal symmetry breaking, neutrinos may become flavor-blind even if they carry different horizontal charges. This provides an attractive mechanism for neutrino flavor anarchy.  相似文献   

15.
We use the detection of neutrinos from a future galactic type-II supernova event in a water Cerenkov detector like Super-Kamiokande to constrain the possible violation of spin-statistics by neutrinos resulting in their obeying a mixed statistics instead of Fermi–Dirac.  相似文献   

16.
Superfluid condensation of neutrinos of cosmological origin at a low enough temperature can provide simple and elegant solution to the problems of neutrino oscillations and the accelerated expansion of the universe. It would give rise to a late time cosmological constant of small magnitude and also generate tiny masses for the neutrinos as observed from their flavor oscillations. We show that carefully prepared beta decay experiments in the laboratory would carry signatures of such a condensation, and thus, it would be possible to either establish or rule out neutrino condensation of cosmological scale in laboratory experiments.  相似文献   

17.
Silvia Pascoli 《Pramana》2006,67(4):665-680
Establishing CP-violation in the lepton sector is one of the most challenging future tasks in neutrino physics. The lepton mixing matrix contains one Dirac phase and, if neutrinos are Majorana particles, two additional CP-violating phases. I will review the main theoretical aspects of CP-violation in the lepton sector. Then, I will present the strategies for determining the Dirac and the Majorana CP-violating phases in long-baseline and neutrinoless double beta decay experiments, respectively. Leptonic CP-violation has received recently a lot of attention as it might be at the origin of the baryon asymmetry of the Universe. Within the context of the see-saw mechanism, I will discuss the possible connection between the CP-violating phases measurable at low energy with the ones entering in leptogenesis.  相似文献   

18.
The possible presence of anI=0 axial vector piece in the hadronic neutral current may be detected by looking for an asymmetry in the emission of the recoil deuterons in elastic scattering of neutrinos or antineutrinos on polarized deuterons. It is estimated that this asymmetry could be about 40% with the incident neutrinos in the energy range of tens of MeV.  相似文献   

19.
In this paper we introduce the concept of what we call “NUDAR” (NeUtrino Direction and Ranging), making the point that measurements of the observed energy and direction vectors can be employed to passively deduce the exact three-dimensional location and thermal power of geophysical and anthropogenic neutrino sources from even a single detector. Earlier studies have presented the challenges of long-range detection, dominated by the unavoidable inverse-square falloff in neutrinos, which force the use of kiloton scale detectors beyond a few kilometers. Earlier work has also presented the case for multiple detectors, and has reviewed the background challenges. We present the most precise background estimates to date, all handled in full three dimensions, as functions of depth and geographical location. For the present calculations, we consider a hypothetical 138 kiloton detector which can be transported to an ocean site and deployed to an operational depth. We present a Bayesian estimation framework to incorporate any a priori knowledge of the reactor that we are trying to detect, as well as the estimated uncertainty in the background and the oscillation parameters. Most importantly, we fully employ the knowledge of the reactor spectrum and the distance-dependent effects of neutrino oscillations on such spectra. The latter, in particular, makes possible determination of range from one location, given adequate signal statistics. Further, we explore the rich potential of improving detection with even modest improvements in individual neutrino direction determination. We conclude that a 300 MWth reactor can indeed be geolocated, and its operating power estimated with one or two detectors in the hundred kiloton class at ranges out to a few hundred kilometers. We note that such detectors would have natural and non-interfering utility for scientific studies of geo-neutrinos, neutrino oscillations, and astrophysical neutrinos. This motivates the development of cost effective methods of constructing and deploying such next generation detectors.  相似文献   

20.
The neutrino events recorded in the Kolar Gold Field Nucleon Decay detector are analysed here. It is shown that there is good agreement between the observations and the estimates based on the intensities of atmospheric neutrinos and interaction cross-sections of neutrinos available from accelerator experiments. In the context of the search for proton decay, we show that the low energy (<2 GeV) neutrino events, which would provide the main background, are suppressed at thekgf site since it is situated near geomagnetic equator, where the geomagnetic cut-off rigidities are high. A comparison of the predicted characteristics ofv-induced events with thekgf observations shows that, within the statistical accuracy of the present data, the signal due to nucleon decay stands out distinctly within thev-induced background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号