首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new trifluoromethylated bis(ether amine), 1,5-bis(4-amino-2-trifluoromethylphenoxy)naphthalene, was synthesized in two steps starting from 1,5-dihydroxynaphthalene and 2-chloro-5-nitrobenzotrifluoride via nucleophilic aromatic substitution and catalytic reduction. A series of novel fluorinated polyimides with moderate to high molecular weights were synthesized from the diamine with various aromatic tetracarboxylic dianhydrides using a conventional two-stage process. All polyimides could afford flexible and tough films and most of them were soluble in strong polar solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc). The polyimides showed glass-transition temperatures (Tg) in the range of 253-315 °C (by DSC) and softening temperatures (Ts) in the range of 250-300 °C (by TMA). Decomposition temperatures for 5% weight loss all occurred above 500 °C in both air and nitrogen atmospheres. The dielectric constants of these polymers ranged from 3.17 to 3.64 at 1 MHz. The properties of these fluorinated polyimides were also compared with those of polyimides prepared from 1,5-bis(4-aminophenoxy)naphthalene with the same dianhydrides.  相似文献   

2.
Poly(1,3,4-oxadiazole-ether-imide)s were prepared by thermal imidization of poly(amic-acid) intermediates resulting from the solution polycondensation reaction of a bis(ether-anhydride), namely 2,2′-bis-[(3,4-dicarboxyphenoxy)phenyl]-1,4-phenylenediisopropylidene dianhydride, with different aromatic diamines containing 1,3,4-oxadiazole ring, such as 2,5-bis(p-aminophenyl)-1,3,4-oxadiazole, 2,5-bis[p-(4-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2-(4-dimethylaminophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole. Poly(1,3,4-oxadiazole-ether-imide)-polydimethylsiloxane copolymers were prepared by polycondensation reaction of the same bis(ether-anhydride) with equimolar quantities of an aromatic diamine having 1,3,4-oxadiazole ring and a bis(aminopropyl)polydimethylsiloxane oligomer of controlled molecular weight. A solution imidization procedure was used to convert quantitatively the poly(amic-acid) intermediates to the corresponding polyimides. All the polymers were easily soluble in polar organic solvents such as N-methylpyrrolidone and N,N-dimethylacetamide. The polymers showed good thermal stability with decomposition temperature being above 400 °C. Solutions of some polymers in N-methylpyrrolidone exhibited blue fluorescence, having maximum emission wavelength in the range of 370-412 nm.  相似文献   

3.
ABSTRACT

Three wholly, semi aromatic and aliphatic-aromatic polyimides containing bis(phenoxy) naphthalene, bis[(phenoxy) phenyl] propane and bis(phenoxy-methyl) cyclohexane segments by the two-step procedure from 2, 7-bis(4-aminophenoxy) naphthalene (BAPON), 2, 2-bis[4-(4-aminophenoxy)phenyl]propane (BAPOP), 1, 4-bis (4-aminophenoxy methyl) cyclohexane (BAPMC) as a diamine and 4,4′-carbonyldiphthalic anhydride (CDPA) were prepared. The first step of this procedure including ring-opening polyaddition in a polar solvent to give poly(amic-acid)s, second step containing cyclodehydration reaction to form polyimides. Synthesized monomer and polyimides were characterized by FT-IR, 1H NMR spectroscopy and elemental analyses (CHN) that obtained results gave the most powerful evidence. The polyimide synthesized from BAPON was characterized as semi-crystalline, whereas the other polyimides showed amorphous patterns by the x-ray diffraction studies. The inherent viscosity was ranging between 0.87–1.01 dL/g. Tensile strength, initial moduli, and elongation at break of the polyimide films ranged from 88–117 MPa, 1.98–2.32 GPa, and 5–8%, respectively. Thermogravimetric analysis in nitrogen atmosphere shows that these polymers having good stability, so 10% weight will be lost in the range of 500–630°C. The point of polyimide with BAPMC segment, is “adding of good thermal stability and processability” lower moisture absorption and dielectric constant (0.75% and 2.90).  相似文献   

4.
A new sulfone ether amide diamine was synthesized via three steps, starting from reaction of 4-aminophenol with 4-nitrobenzoyl chloride in the presence of propylene oxide afforded N-(4-hydroxy phenyl)-4-nitrobenzamide (HPNB). In the next step, reduction of nitro group resulted in preparation of 4-amino-N-(4-hydroxy phenyl) benzamide (AHPB). Final step in the preparation of diamine was the reaction of AHPB with bis(4-chlorophenyl) sulfone in the presence of K2CO3. All the materials were characterized using conventional spectroscopic methods. Poly(sulfone ether amide amide)s were synthesized by polycondensation reactions of prepared diamine with different diacid chlorides (aromatic and aliphatic ones). The obtained polymers were fully characterized and their physical properties including thermal behavior, thermal stability, solubility, and inherent viscosity were studied.  相似文献   

5.
A series of polyamides and poly(amide-imide)s were prepared by the direct poly-condensation of 2,2-bis(4-aminophenoxy) benzonitrile [4-APBN] with aromatic dicarboxylic acids and bis(carboxyphthalimide)s in N-methyl-2-pyrrolidone [NMP] with triphenyl phosphite and pyridine as condensing agents. The synthesis of 4-APBN involves a nucleophilic displacement reaction in dipolar aprotic solvent with the alkali metal salt of p-aminophenol and an activated aromatic dichloro compound. Bis(carboxyphthalimide)s were prepared by condensation of 4,4-diaminodiphenylsulfone, 3,3-diaminodiphenylsulfone, 4,4-diaminodiphenylether, 4,4-diaminodiphenylmethane, 3,3-diaminobenzophenone, and trimellitic anhydride at a 1:2 molar ratio. The inherent viscosities of the resulting polymers were found to be in the range of 0.31-0.93 dl/g and glass transition temperatures between 235 and 298 °C. All polymers were soluble in aprotic polar solvents such as dimethylsulfoxide and NMP. The results of thermogravimetry revealed that all the polymers showed no significant weight loss before 400 °C. Wide-angle X-ray diffractograms revealed that all polymers were found to be amorphous except for the polyamide derived from isophthalic acid and polyamide-imides derived from diaminodiphenylether and diaminobenzophenone based bis(carboxyphthalimide)s.  相似文献   

6.
In this work, a series of polyimides containing main-chain chalcone groups and side-chain cinnamate or acetate groups were synthesized. In the synthetic route, three dianhydride monomers were prepared by the reactions of 1,3-dihydro-1,3-dioxoisobenzofuran-5-carbonyl chloride with 1,3-bis(4-hydroxylphenyl)prop-2-en-1-one, 1,3-bis(4-(2-hydroxyethyl)phenyl)prop-2-en-1-one, and 1,3-bis(4-hydroxyphenyl)-pent-1-en-3-one-4-en, respectively. The precursor polyimides were obtained by the polycondensation of the dianhydride monomers with 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane and the in situ imidization. After the polymerization, the final products were obtained by introducing the side groups through the reactions of the polyimide precursors with cinnamoyl chloride or acetic anhydride. The chemical structures and properties of the polyimides were characterized by elemental analysis, 1H NMR, 13C NMR, FTIR, GPC, and thermal analysis. The polyimides show high thermal stability and good solubility in aprotic polar organic solvents. The polyimides can undergo sensitive [2+2] photocycloaddition reaction upon the UV light irradiation. After irradiation with linearly polarized UV light, the polyimide thin films can induce 5CB liquid crystal molecules to homogeneously align in the liquid crystal cells. Both the alignment ability and pretilt angles of the molecular orientation depend on the chemical structures of the polyimides.  相似文献   

7.
New poly(1,3,4-oxadiazole-imide)s containing dimethylsilane units have been prepared by solution polycondensation reaction of an aromatic dianhydride incorporating dimethylsilane group, namely bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride, with different aromatic diamines having preformed 1,3,4-oxadiazole ring, such as 2,5-bis(p-aminophenyl)-1,3,4-oxadiazole, 2,5-bis[p-(4-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2,5-bis[p-(3-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2-(4-fluorophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole, and 2-(4-dimethylaminophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole. The polymers were easily soluble in polar organic solvents, such as N-methylpyrrolidinone, N,N-dimethylformamide, and pyridine, as well as in less polar organic solvents, such as tetrahydrofuran and chloroform. Very thin coatings deposited on silicon wafers exhibited smooth, pinhole-free surface in atomic force microscopy investigations. The polymers showed high thermal stability with decomposition temperature being above 415 °C.They exhibited a glass transition in the temperature range of 202-282 °C, with reasonable interval between glass transition and decomposition temperature. Solutions of the polymers in N,N-dimethylformamide exhibited fluorescence, having maximum emission wavelength in the range of 353-428 nm.  相似文献   

8.
A novel sulfone ether ester diamine was prepared by a three-step method. Reaction of 1,5-dihydroxy naphthalene with 4-nitrobenzoyl chloride afforded 5-hydroxy-1-naphthyl-4-nitrobenzoate. Reduction of nitro group by iron powder and HCl resulted in preparation of 5-hydroxyl-1-naphthyl-4-aminobenzoate. Reaction of this compound (two moles) with bis (4-chlorophenyl) sulfone led to preparation of a novel sulfone ether ester diamine. Three novel aromatic poly(sulfone ether ester imide)s were synthesized by polycondensation reactions of the prepared diamine with aromatic dianhydrides. Conventional methods were used to characterize the structure of the monomer and polymers. Physical properties of the polymers were also studied. The polyimides showed high thermal stability.  相似文献   

9.
A diamine was synthesized by two successive reactions.Nucleophilic reaction of 4-hydroxybenzoic acid with terephthaloyl chloride yielded terephthaloyl bis(4-oxybenzoic) acid.Then reaction of this compound with 1,8-diamino-3,6- dioxaoctane via Yamazaki method resulted in preparation of diamine named terephthalic acid bis(4-{2-[2-(2-amino ethoxy)ethoxy]ethyl carbamoyl}phenyl) ester.After fully characterization it was used to prepare new polyimides through polycondensation with different dianhydrides using trimethylchlorosilane.Characterization of polymers was achieved by common methods and their physical properties including inherent viscosity,thermal behavior,thermal stability,crystallinity and solubility were studied.Prepared polyimides showed improved solubility and good thermal stability.  相似文献   

10.
A new kind of pyridine-containing aromatic diamine monomer, 4-phenyl-2, 6-bis [3-(4-aminophenoxy)phenyl]-pyridine(m-PAPP),was synthesized by a modified Chichibabin reaction of benzaldehyde and a substituted acetophenone, 3-(4-nitrophenoxy)-acetophenone(m-NPAP), and a reduction of the resulting dinitro compound 4-phenyl-2, 6-bis[3-(4-nitrophenoxy)phenyl]-pyridine (m-PNPP) with Pd/C and hydrazine monohydrate, successively. A series of novel aromatic polyimides were prepared from the diamine with various aromatic dianhydrides via a conventional two-step thermal or chemical imidization method. The inherent viscosities of the resulting poly (amic acid) precursors were 1.37-1.56 dL/g, and these polymers could be cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimides displayed higher solubility in polar solvents such as NMP, DMSO and m-cresol. The glass transition temperatures of these polymers were recorded at 180-264 °C. All of these novel polyimides held 10% weight loss at the temperature above 430 °C and left more than 50% residue even at 800 °C in air, as well as have outstanding mechanical properties with the tensile strengths of 91.6-114.1 MPa and elongations at breakage of 10.1-15.7%. Wide-angle X-ray diffraction measurements revealed that these polyimides were predominantly amorphous.  相似文献   

11.
Photosensitive polyimides with alicyclic diamines and benzophenone moiety were prepared by reactions of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) with diamines in aprotic solvents, followed by thermal or chemical imidizations. Among them the polyimide from BTDA and bis(4-amino-3-methylcyclohexyl) methane (DMDHM) can be dissolved in several organic solvents such as dichloromethane, tetrachloroethane, and N-methyl-2-pyrrolidone (NMP). In order to compare properties of the polyimides with alicyclic diamines with those of corresponding aromatic polyimides, the UV absorption spectra and fluorescence spectra of these polyimides and their model compounds were investigated. No occurrence of charge transfer at photoexcited states was ascertained for the polyimides with alicyclic diamines. The hydrogen abstraction and crosslinking during photoirradiation have been studied to learn the influence of the elimination of charge transfer process in these photosensitive polyimides. The quantum yield of hydrogen abstraction for the model compound of alicyclic polyimides is 0.56 in THF measured with HPLC. The quantum yield for the photocrosslinking reaction of the solvent-soluble polyimide with alicyclic diamine, PI(BTDA/DMDHM), was determined to be 0.004 in air from gel permeation chromatography (GPC) measurement, which is four times higher than that for photosensitive polyimides with aromatic diamines. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The synthesis of two phenylated bifunctional monomers, dimethyl 4-(4-(p-aminophenoxy)phenyl)-3,5,6-triphenylphthalate and dimethyl 4-(4-(4-(p-aminophenoxy)phenoxy)phenyl)-3,5,6-triphenylphthlate, was accomplished. Polymerization in solution or by a bulk polymerization procedure yielded a series of low molecular weight phenylated polyimides. The polymers were soluble in chlorinated hydrocarbons and exhibited thermal stabilities comparable to other polyimide systems.  相似文献   

13.
A series of new polyimides (PIs) containing di-tert-butyl side groups were synthesized via the polycondensation of 4-(4-amino-2-chlorophenyl)-1-(4-aminophenoxy)-2,6-di-tert-butylbenzene (3) with various aromatic tetracarboxylic dianhydrides. The introduction of the asymmetric di-tert-butyl groups and twisted-biphenyl structures is an effective way to increase the inter chain distance and decrease the intermolecular interaction and packing ability of the resulted polymers. Thus, these novel PIs exhibited low dielectric constants (2.83-3.10), low moisture absorption (0.95-1.69%), excellent solubility, and high glass transition temperatures (307-456 °C). The PIs derived from the new diamine and the rigid pyromellitic dianhydride (PMDA) were soluble in N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, tetrahydrofuran, m-cresol, and cyclohexanone. The polymers also show good retention of storage modulus at high temperature (325 °C). In addition, 1H NMR spectrum of the diamine 3 revealed that the protons of 4-aminophenoxy moiety are not chemical shift equivalent.  相似文献   

14.
A new pyridine-based diacid containing ether and imide units was synthesized via reaction of 5-amino-1-naphthol with 2,6-dichloropyridine in the presence of potassium carbonate in N-methyl-2-pyrrolidone (NMP), and subsequent reaction of the obtained diamine with 2 mol of trimellitic anhydride. A series of poly(ether imide ester)s was synthesized by the polycondensation reactions of the prepared diacid with different diols via high temperature solution polycondensation reaction method. All the products were fully characterized by common spectroscopic methods. The polymers were examined by elemental analysis, IR and 1H NMR spectra, inherent viscosity, X-ray diffraction, DSC, TGA and DMTA and their properties were studied. Polymers showed high thermal stability and good solubility in polar aprotic solvents. The Structure-property relations of the polymers were also studied.  相似文献   

15.
《European Polymer Journal》1986,22(4):277-284
The physical and thermal properties of various phosphorus-containing polyimides, polyamides and polyureas based on 1-[(dialkoxyphosphinyl)methyl]-2,4- and -2,6-diaminobenzenes as well as of the corresponding common polymers derived from m-phenylenediamine were compared and correlated with their chemical structure. Differential scanning calorimetry (DSC) measurements showed that the introduction of the (dialkoxyphosphinyl) methyl groups in the polymers converted their endothermic pyrolysis under anaerobic conditions to exothermic or reduced the heat adsorbed during their pyrolysis. Thermogravimetric analysis (TGA) showed that the thermal stability of the polymers and the char yield formed during their pyrolysis were in the order polyureas < polyamides < polyimides. All phosphorylated polymers showed a lower degree of polymerization, a lower polymer decomposition temperature and formed higher char residue on pyrolysis than the corresponding common polymers.  相似文献   

16.
A series of aromatic polyimides (PI-IIa-d) containing lateral phenylphosphine oxide (PPO) and trifluoromethyl (-CF3) moiety were prepared from an aromatic diamine, 2,5-bis[(4-amino-2-trifluoromethylphenoxy)phenyl]diphenyl-phosphine oxide (BATFDPO) and various aromatic dianhydrides via a two-step chemical imidization procedure. In parallel, for comparison, another series of polyimides (PI-Ia-d) without trifluoromethyl were synthesized from a diamine, 2,5-bis[(4-aminophenoxy)-phenyl]diphenylphosphine oxide (BADPO) and the same dianhydrides. It was found that both of the two series of polyimides (PIs) were soluble in polar aprotic solvents, such as N-methyl-2-pyrrolidinone (NMP) and the solubility of PI-IIa-d was highly enhanced by the introduction of the bulky -CF3 group. Flexible and tough PI films with tensile strengths higher than 70 MPa were cast from the PI solution. The introduction of -CF3 moiety slightly sacrificed the thermal stability and mechanical properties of the PI films. For example, PI-IIa-d showed 5% weight loss at 472-476 °C, which was about 50 °C lower than those of their PI-Ia-d analogues. However, -CF3 group apparently improved the optical transparency and decreased the refractive indices of the PI films. PI-IId derived from BATFDPO and 4,4’-hexafluoroisopropylidenediphthalic anhydride (6FDA) exhibited the highest optical transparency with the transmittance of 90% at 400 nm and the refractive index as low as 1.5511 at 1310 nm.  相似文献   

17.
Optically active 2,2′-bis(2-trifluoro-4-aminophenoxy)-1,1′-binaphthyl and its corresponding racemate were prepared by a nucleophilic substitution reaction of 1,1′-bi-2-naphthol with 2-chloro-5-nitrotrifluorotoluene and subsequently by the reduction of the resulting dinitro compounds. A series of optically active and optically inactive aromatic polyimides also were prepared therefrom. These polymers readily were soluble in common organic solvents such as pyridine, N,N′-dimethylacetamide, and m-cresol and had glass-transition temperatures of 256 ∼ 278 °C. The specific rotations of the chiral polymers ranged from 167 ∼ 258°, and their chiroptical properties also were studied. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4536–4540, 1999  相似文献   

18.
Several new polyimides were prepared from the reaction of three aromatic dianhydrides with two new methyl substituted aromatic diamines containing carbonyl and ether connecting groups between the aromatic rings. The diamines were prepared from the reactions of 3-methyl-4-aminophenol and 3,5-dimethyl-4-aminophenol with 1,3-bis(4-fluorobenzoyl) benzene in the presence of potassium carbonate. The 300°C cured polyimides containing methyl substituents were shown to be armorphous by wide angle X-ray diffraction and exhibited glass transition temperatures between 231–281°C. The properties of these new polyimides containing methyl substituents were compared with polymides of the same chemical structure but without methyl substituents.  相似文献   

19.
Two novel diamine monomers, 1,4‐bis (4‐aminophenoxy)‐2‐[(3′,5′‐ditrifluoromethyl)phenyl]benzene and 1,4‐bis [2′‐cyano‐3′(4″‐amino phenoxy)phenoxy]‐2‐[(3′,5′‐ditrifluoromethyl)phenyl] benzene, were synthesized from (3,5‐ditrifluoromethyl)phenylhydroquinone. A series of ditrifluoromethylated aromatic polyimides derived from the diamines were prepared through a typical two‐step polymerization method. These polyimides had a high thermal stability, and the temperatures at 10% weight loss were above 507 °C in nitrogen. Most of the polymers showed good solubility in anhydrated 1‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, chloroform, and tetrahydrofuran at room temperature. All the polymers formed transparent, strong, and flexible films with tensile strengths of 63.6–95.8 MPa, elongations at break of 5–10%, and Young's moduli of 2.38–2.96 GPa. The dielectric constants estimated from the average refractive indices are 2.69–2.89. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3018–3029, 2005  相似文献   

20.
New aromatic polyimides containing a biphenyl-2,2′-diyl or 1,1′-binaphthyl-2,2′-diyl unit were prepared by a conventional two-step method starting from 2,2′-bis(p-aminophenoxy) biphenyl or 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl and aromatic tetracarboxylic dianhydrides. The polyimides having inherent viscosities of 0.69–0.99 and 0.51–0.59 dL/g, respectively, were obtained. Some of these polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. Transparent, flexible, and pale yellow to brown films of these polymers could be cast from the DMAc or NMP polyamic acid solutions. These aromatic polyimides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 200–235 and 286–358°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号