首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sonochemical oxidation of multiwalled carbon nanotubes   总被引:2,自引:0,他引:2  
Functionalization of carbon nanotubes (CNTs) is important for enhancing deposition of metal nanoparticles in the fabrication of supported catalysts. A facile approach for oxidizing CNTs is presented using a sonochemical method to promote the density of surface functional groups. This was successfully employed in a previous study [J. Phys. Chem. B 2004, 108, 19255] to prepare highly dispersed, high-loading Pt nanoparticles on CNTs as fuel cell catalysts. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, cyclic voltammetry, and settling speeds were used to characterize the degree of surface functionalization and coverage. The sonochemical method effectively functionalized the CNTs. A mixture of -C-O-/-C=O and -COO- was observed along with evidence for weakly bound CO at longer treatment times. The integrated XPS C 1s core level peak area ratios of the oxidized-to-graphitic C oxidation states, as well as the atom % oxygen from the O 1s level, showed an increase in peak intensity (attributed to -CO(x)()) with increased sonication times from 1 to 8 h; the increase in C surface oxidation correlated well with the measured atom %. Most of the CNT surface oxidation occurred between 1 and 2 h. The sonochemically treated CNTs were also studied by cyclic voltammetry and settling experiments, and the results were consistent with the XPS observations.  相似文献   

2.
Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) were synthesized by thermal decomposition of pyridine and iron phthalocyanine over an iron catalyst in an atmosphere of ammonia. The N-MWCNTs thus obtained were analyzed by X-ray photoelectron spectroscopy. They were found to contain three types of nitrogen (N) atoms, namely pyridine-like, graphite-like, and molecular N. The effect of the pyridine-like N and the graphite-like N was investigated. The pyridine-like N is absorbing nitric oxide (NO) more easily than the graphite-like N. The N-MWCNTs with higher N content (especially the pyridine-like N) have higher catalytic activity (in terms of electrooxidation of NO) than those containing less N. The N-MWCNTs with high levels of pyridine N were incorporated into an electrode which suitable for sensing NO and for removal of NO due to its excellent electrocatalytic activity.  相似文献   

3.
The sorption of Pu(IV), polymeric Pu(IV), Pu(V) and Pu(VI) from the 0.1 M NaClO4 solution onto multiwalled carbon nanotubes was investigated. The kinetic study of the sorption process have shown that the polymeric Pu(IV) has the highest sorption rate, while decrease of sorption rate for plutonium aqua-ions in the order Pu(VI) > Pu(IV) > Pu(V) was found. Strong dependence of sorption kinetics of ionic plutonium species on pH was shown, in contrast to polymeric species, that were shown to quantitatively sorb (99%) in the wide pH range (pH 2–10). Two different sorption mechanisms for ionic and polymeric plutonium species were proposed: on the bases of sorption isotherms chemisorptions of plutonium aqua-ions onto carbon nanotubes and through intermolecular interaction for the polymeric plutonium species was defined. Distribution coefficients of plutonium in various oxidation states were found to increase with pH, showing the highest values for polymeric plutonium sorption (K d  = 2.4 × 105 mL g−1 at pH = 6).  相似文献   

4.
Because of their unique properties, carbon nanotubes and, in particular, multiwalled carbon nanotubes (MWNTs) have been used for the development of advanced composite and catalyst materials. Despite their growing commercial applications and increased production, the potential environmental and toxicological impacts of MWNTs are not fully understood; however, many reports suggest that they may be toxic. Therefore, a need exists to develop protocols for effective and safe degradation of MWNTs. In this article, we investigated the effect of chemical functionalization of MWNTs on their enzymatic degradation with horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). We investigated HRP/H(2)O(2) degradation of purified, oxidized, and nitrogen-doped MWNTs and proposed a layer-by-layer degradation mechanism of nanotubes facilitated by side wall defects. These results provide a better understanding of the interaction between HRP and carbon nanotubes and suggest an eco-friendly way of mitigating the environmental impact of nanotubes.  相似文献   

5.
We report the electrochemistry of amino-functionalized multiwalled carbon nanotubes (MWCNTs-NH2) in the pH range from 0.3 to 6.4 using quantitative cyclic voltammetry (CV) and single entity electrochemistry measurements, making comparison with non-functionalized MWCNTs. CV showed the latter to both catalyze the solvent (water) decomposition and to undergo irreversible electro-oxidation forming oxygen containing surface functionality. The MWCNTs-NH2 additionally undergo an irreversible oxidation to an extent which is dependent on the pH of the solution, reflecting the variable amount of deprotonated amino groups present as a function of pH. Nano-impact experiments conducted at the single particle level confirmed the oxidation of both types of MWCNTs, showing agreement with the CV. The pKa of the amino groups in MWCNTs was determined via both electrochemical methods giving consistent values of ca. 2.5.

A new and generic approach to the study of the oxidation of different forms of CNTs is found by using quantitative single entity and ensemble electrochemistry measurements.  相似文献   

6.
Polymers containing poly(ethylene glycol) methacrylate and 2-(2-methoxyethoxy)ethyl methacrylate have been synthesized by Cu(0)-mediated radical polymerisation for use as thermoresponsive water-dispersants for carbon nanotubes.  相似文献   

7.
8.
A new synthesis method for the preparation of high-performance PtRu electrocatalysts on multiwalled carbon nanotubes (MWCNTs) is reported. In this method, bimetallic PtRu electrocatalysts are deposited onto 1-aminopyrene (1-AP)-functionalized MWCNTs by a microwave-assisted polyol process. The noncovalent functionalization of MWCNTs by 1-AP is simple and can be carried out at room temperature without the use of expensive chemicals or corrosive acids, thus preserving the integrity and the electronic structure of MWCNTs. PtRu electrocatalysts on 1-AP-functionalized MWCNTs show much better distribution with no formation of aggregates, higher electrochemically active surface area, and higher electrocatalytic activity for the electrooxidation of methanol in direct methanol fuel cells as compared to that on conventional acid-treated MWCNTs and carbon black supported PtRu electrocatalysts. PtRu electrocatalysts on 1-AP-functionalized MWCNTs also show significantly enhanced stability.  相似文献   

9.
10.
We report a fabrication process for constructing polymer surfaces with multiwalled carbon nanotube hairs, with strong nanometer-level adhesion forces that are 200 times higher than those observed for gecko foot-hairs.  相似文献   

11.
A novel method for fabricating protein-MWNT films on pyrolytic graphite (PG) electrodes was described. Positively charged hemoglobin (Hb) or myoglobin (Mb) in buffers at pH 5.5 or 5.0 was first adsorbed on the surface of acid-pretreated, negatively charged multiwalled carbon nanotubes (MWNTs) mainly by electrostatic interaction, forming a core-shell structure. The aqueous dispersion of protein-coated MWNTs was then cast on PG electrodes, forming protein-MWNT films after evaporation of solvent. The protein-MWNT films exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks, characteristic of heme Fe(III)/Fe(II) redox couples. The protein films were characterized by voltammetry, UV-vis spectroscopy, and scanning electron microscopy (SEM). This approach for assembly of protein-MWNT films showed higher surface concentration of electroactive proteins than the simple cast method, and the amount of proteins in the films could be controlled more precisely compared with the dipping method. Furthermore, the film assembly using this method was more stable than that using simple cast method. The proteins in MWNT films retained their near-native structure, and electrochemically catalyzed reduction of oxygen and hydrogen peroxide, suggesting the potential applicability of the films as the new type of biosensors or bioreactors based on direct electrochemistry of enzymes.  相似文献   

12.
Thermal cycloaddition of 1,3-dipolar azomethine ylides to the sidewalls of multiwalled carbon nanotubes (MWNTs) has been used to prepare MWNTs that contain 2-methylenethiol-4-(4-octadecyloxyphenyl) (4), N-octyl-2-(4-octadecyloxyphenyl) (5) or 2-(4-octadecyloxyphenyl)pyrrolidine (6) units. All these contain the 4-octadecyloxyphenyl substituent that acts as a solubilizing group. Microwave (MiW)-assisted heating was found to be highly efficient for soluble MWNTs, for which the amount of added groups after only 2 h of MiW heating at 200 degrees C, determined by using thermogravimetric analysis, was found to be in the same range as that obtained after 100-120 h of conventional heating of soluble and insoluble MWNTs. Solubility is a key feature for a successful MiW-heated reaction; MWNTs insoluble in the reaction medium yielded considerably less addends in the MiW-heated reactions than in the conventionally heated reaction. The location and even distribution of the pyrrolidine units over the outermost layer of the MWNTs was verified by transmission electron microscopy analysis of 4 that had been treated with gold nanoparticles and thoroughly washed to remove gold particles adsorbed on nonfunctionalized parts of the MWNTs.  相似文献   

13.
Bundle-type mutil-walled carbon nanotubes (MWCNTs) composite electrode is the first investigation and publication for the supercapacitor application. According to the thermogravimetric analysis results, as-synthesized BCNTs are considered as the electrode materials for supercapacitors and electrochemical double-layer capacitor in this study. The Brunauer–Emmett–Teller specific surface area of as-prepared bundled carbon nanotubes (BCNTs) is 95.29 m2/g given to a type III isotherm and H3 hysteresis loops. Slow scanning rates promote and enhance to achieve high Cb because of the superior conductivity of CNT bundles and one side close-layered Ni/Mg/Mo alloy inside the BCNT-based electrode and facile electron diffusivity between electrolyte and electrode. The specific capacitance Cs (1,560 F/g) is nearly equal to the maximum specific capacitance, which the BCNT-based composite electrode can actually be able to charge or fill in. The maximum energy density value is 195 Wh/kg with corresponding power density values of 0.21 kW/kg. Furthermore, the active 3D BCNTs material fabricated electrode enhances to contact the electrolyte directly and decreases the ion diffusion limitation. Electrochemical impedance spectroscopy spectrum summarized as the low-frequency area controls by mass transfer limitation, and the high-frequency area dominates by charge transfer of kinetic control. After 2,000 consecutive cyclic voltammetry sacnings and galvanostatic charge-discharge cycles at a current density of 1.67 A/g performs, the specific capacitance retentions of 3D BCNTs electrodes achieved 128.2 and 77.3%, respectively. Three-dimensional BCNT composite electrodes exhibit good conductivity and low charge transfer resistance, which is beneficial to fast charge transfer between the BCNTs electrode materials and electrolytes.  相似文献   

14.
A new soluble multiwalled carbon nanotubes (MWNTs) covalently functionalized with conjugated polymer PCBF, in which the wt % of MWNTs is approximately calculated as 7.3%, and the average thickness of PCBF covalently grafted onto MWNTs is 10.4 nm, was synthesized by an amidation reaction. In contrast to the starting polymer PCBF‐NH2, grafting of PCBF onto MWNTs led to a 0.3 eV red‐shift of the N1s XPS peak at 399.7 eV assigning to N in the unreacted NH2moieties in the resulting copolymer structure and an appearance of new peak at 402 eV corresponding to N bound to the carbonyl C (i.e., NH? C?O). Unlike PCBF‐NH2, which only displayed a weak optical limiting response at 532 nm, Z‐scan for MWNT‐PCBF exhibited a much broader reduction in transmission and a scattering accompanying on the focus of the lens at both 532 and 1064 nm, indicating a prominent broadband optical limiting response. The thermally induced nonlinear scattering is responsible for the optical limiting. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
W Gao  X Sun  T Chen  Y Lin  Y Chen  F Lu  Z Chen 《Journal of separation science》2012,35(15):1967-1976
In the present work, we showed a novel method to synthesize cyano-functionalized multiwalled carbon nanotubes (MWCNTs-CN) and utilize it as a solid-phase extraction sorbent for preconcentration of phenolic compounds in environmental water samples. MWCNTs-CN was synthesized through surface functionalization of multiwalled carbon nanotubes (MWCNTs). The functional groups on the surface of modified MWCNTs were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. The analytical procedure was based on a conventional solid-phase extraction step for which 100 mg of MWCNTs-CN were packed in a 3 mL polypropylene cartridge. Analytes were thus isolated and preconcentrated from the pretreated samples and subsequently detected on high-performance liquid chromatography-ultraviolet detection. The results showed the proposed method exhibited good sensitivity and precision for the extraction and elution of analytes. The limit of detections (S/N = 3) of the method were 0.45, 0.09, 0.08, and 3.00 ng mL(-1) for p-chlorophenol, 1-naphthol, 2-naphthol, and 2,4-dichlorophenol, respectively. The mean relative recoveries (n = 3) were between 80.28 and 103.13%, and the repeatability (RSD ≤ 5.10%) and reproducibility (RSD ≤ 7.68%) were accepted. This developed method was applied to determine phenolic compounds in environmental water samples. There is a positive result only for 2-naphthol with concentration of 0.38 ng mL(-1) in seawater sample.  相似文献   

16.
Hydrogen storage in ni nanoparticle-dispersed multiwalled carbon nanotubes   总被引:5,自引:0,他引:5  
Hydrogen storage properties of mutiwalled carbon nanotubes (MWCNTs) with Ni nanoparticles were investigated. The metal nanoparticles were dispersed on MWCNTs surfaces using an incipient wetness impregnation procedure. Ni catalysts have been known to effectively dissociate hydrogen molecules in gas phase, providing atomic hydrogen possible to form chemical bonding with the surfaces of MWCNTs. Hydrogen desorption spectra of MWCNTs with 6 wt % of Ni nanoparticles showed that approximately 2.8 wt % hydrogen was released in the range of 340-520 K. In Kissinger's plot to evaluate the nature of interaction between hydrogen and MWCNTs with Ni nanoparticles, the hydrogen desorption activation energy was measured to be as high as approximately 31 kJ/mol.H(2), which is much higher than the estimates of pristine SWNTs. C-H(n)() stretching vibrations after hydrogenation in FTIR further supported that hydrogen molecules were dissociated when bound to the surfaces of MWCNTs. During cyclic hydrogen absorption/desorption, there was observed no significant decay in hydrogen desorption amount. The hydrogen chemisorption process facilitated by Ni nanopaticles could be suggested as an effective reversible hydrogen storage method.  相似文献   

17.
Multiwalled carbon nanotubes (MWNTs) functionalized with a hyperbranched aliphatic polyester and two different poly(ethylene glycol)s were synthesized by the reactions of carbonyl chloride groups on the surface of MWNTs and hydroxyl groups of polymers. Electrochemical intercalation of lithium in the three materials was investigated with galvanostatic charge-discharge experiments. The hyperbranched polymer-functionalized MWNT as an electrode material for lithium batteries showed a significant improvement over linear polymer-functionalized MWNTs in lithium insertion/deinsertion capacity and cycle stability. The MWNT functionalized with linear poly(ethylene glycol) showed a high initial capacity of lithium insertion/deinsertion but had the highest capacity fade rate among the materials. Because the polymers were chemically localized in the electrode-electrolyte interface, the comparison between hyperbranched and linear polymer-modified MWNTs manifested the important influence of the electrode-electrolyte interface on the electrochemical properties of lithium batteries.  相似文献   

18.
We describe a novel class of electrically conductive transparent materials based on multiwalled carbon nanotubes (MWCNTs). Transparent nanocomposites were fabricated by incorporating an aqueous silk fibroin solution into bacterial cellulose membranes. The transparent nanocomposites had a high transmittance in the visible and infrared regions, regardless of the bacterial cellulose fiber content, due to the nanosize effect of the bacterial cellulose nanofibrils. This phenomenon allowed the preparation of a novel electrically conductive transparent paper. The high dispersity of the MWCNTs was realized by utilizing a bacterial cellulose membrane as a template to deposit them uniformly, thereby achieving electrically conductive transparent papers with outstanding optical transparency. The light transmittance and electrical conductivity varied according to the concentration of the MWCNT dispersion. Good optimal transparency and electrical properties were obtained with a light transmittance of 70.3% at 550 nm and electrical conductivity of 2.1 × 10?3 S/cm when the electrically conductive transparent paper was fabricated from a 0.02 wt % aqueous MWCNT dispersion. In addition, the electrically conductive transparent papers showed remarkable flexibility without any loss of their initial properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1235–1242, 2008  相似文献   

19.
Multiwalled carbon nanotubes (MWNTs) functionalized with a water-soluble conducting polymer, sulfonated polyaniline (SPAN), were prepared by in situ polymerization of aniline followed by sulfonation with chlorosulfonic acid in an inert solvent and by hydrolysis in water. Electron microscopy, laser Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-vis absorption spectroscopy were employed to characterize the morphology and chemical structure of the resulting product. The results show that the quinonoid structure of SPAN preferentially interacts with the nanotubes and is stabilized by strong pi-pi interaction between two components. The structure of MWNTs was not perturbed by the incorporation of SPAN, since the pi-pi interaction between MWNTs and SPAN is much weaker in comparison to that of the carbon covalent bond. The SPAN functionalized MWNTs are highly dispersible in water, thus opening new possibilities for their prospective technological applications.  相似文献   

20.
Multiwalled carbon nanotube (MWCNT) was developed as a new sorbent for solid-phase extraction (SPE) of organophosphate (OP) pesticides. A combination of SPE with square-wave voltammetric (SWV) analysis resulted in a fast, sensitive, and selective electrochemical method for determination of OP pesticide using methyl parathion (MP) as a representative. Because of the strong affinity of MWCNT for phosphoric group, nitroaromatic OP compounds can strongly bind to the MWCNT surface. The macroporosity and heterogeneity of MWCNT allow extracting a large amount of MP less than 5 min. The stripping response was highly linear over the MP range of 0.05–2.0 μg/mL, with a detection limit of 0.005 μg/mL. The determination of MP in garlic samples showed acceptable accuracy. The fast extraction ability of MWCNT makes it promising sorbent for various solid-phase extractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号