首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 781 毫秒
1.
PC/PBT共混体系的研究:Ⅰ.PC,PBT熔融共混时的酯交换反应   总被引:9,自引:0,他引:9  
采用红外光谱、核磁共振等测试手段,系统地研究了PC、PBT熔融共混时的酯交换反应,发现PBT中残余的Ti催化剂会对酯交换反应起催化作用。通过加入能和Ti催化剂络合添加剂,可以控制酯交换程度,这为控制PC/PBT合金的性能提供了一个非常有效的方法。  相似文献   

2.
PC/PBT共混体系的研究:(Ⅱ)PC,PBT熔融共混时的相容性   总被引:3,自引:0,他引:3  
采用DSC测定了一系列PC/PBT熔融共混物的Tg,结果显示PC、PBT是部分相容的两相体系,PC、PBT之间的酯交换反应有利于相容性的提高。通过对PC、PBT两相中各组分表观质量分数的计算,发现PC溶于PBT的能力要比PBT溶于PC的能力大。通过对PC、PBT相互作用参数χ12的计算,发现在所研究的范围内(PC含量为30~70%)PC、PBT之间的相互作用参数χ12略大于其临界相互作用参数(χ12)c,表明PC、PBT在熔融共混时会发生相分离,亦即形成部分相容的两相体系  相似文献   

3.
用广角X-角线衍射法和差法扫描量热法研究了磷酸三苯酯对PBT/PET共混体系结晶行为影响,结果表明:TPPW作为该共混体系的稳定剂,只能延长在熔融状态下酯交换反应发生的时间,TPP含量一定时,熔融时间增加,PBT,PET之间的酯交换反应同样会发生,不同熔融时间,就要求TPP的用量也不相同。TPP在PBT/PET共混体系中没有结晶成核剂的作用,它也不改变PBT,PET的结晶结构。  相似文献   

4.
PBT/PC共混体系流变性能与形态结构研究   总被引:1,自引:0,他引:1  
采用毛细管流交仪测定了PBT/PC共混物的表观粘度、剪切应力,观察了不同共混物组成和不同温度下共混物的流变行为,并借助扫描电镜对共混物和微观形态结构进行分析。结果表明:PBT/PC熔体共混物的流变行为接近假塑性流体.温度对共混物的流变行为影响很大,共混物的熔体粘度在PBT/PC为90/10和60/40时呈双极值.共混物为两相结构,PC含量为4-50%时呈两互锁结构。  相似文献   

5.
研究了聚对苯二甲酸丁二酯(PBT)/聚对苯二甲酸乙二酯(PET)共混物的固态缩聚反应,从反应动力学过程的测定结果,表明与纯PET或PBT不同,其反应速度较快,并呈超加和的相对分子质量(以特性粘数[η]表征)增长。从反应发生在液相的基本观点出发,说明温度、共混等使液相增多,将加速反应的进行,加上共混物之间的相互缩聚和酯交换,生成嵌段共聚物的结果,导致超加和效应。  相似文献   

6.
橡胶增韧塑料机理的探讨   总被引:1,自引:0,他引:1  
本实验采用透射电镜及新的RuO_4染色方法,观察研究了PC/PBT,PC/MBS/PS共混体系和AAS共聚共混物的银纹结构形态。结果表明:不同聚合物体系银纹产生的数量,银纹的发展、终止及支化各不相同。这时研究塑料增韧机理很有意义。  相似文献   

7.
本文研究工作表明,聚乙二醇作为聚对苯二甲酸乙二酯(PET)/聚对苯二甲酸丁二酯(PBT)共混体系的结晶促进剂,不仅使聚合物分子链运动容易而有利于结晶时定向排列,晶体生成速度加快,而且使成核的成效率提高,晶核生成速度加快,晶核数目增多而晶体尺寸减小,此外,PEG还部分参与了聚酯的酯交换反应,在低用量时有利于聚合物特性粘数提高,而且量增大则引起聚酯降解。由于PEG的这些作用,共混体系在PEG为6.0%  相似文献   

8.
PBT/PET共混体系的协同效应   总被引:1,自引:0,他引:1  
PBT、PET具有良好相容性,且两种聚合物分子链间存在相互作用,它们的共混体系在熔体降温结晶过程中以及溶液中均表现出协同效应。虽然PBT、PET在共混体系中各自形成晶区,但熔体降温结果过程中只能观察到一个结晶放热峰,当PBT/PET共混物中两组份分子链段数目相近时,熔体降温结晶峰温较低,峰形变宽,共混体系的结晶程度降低在溶液中两组份分子链段数目相近时,共混物特性粘度(η)值最大,分子链的均方根末端  相似文献   

9.
液晶嵌段共聚物PET/60PHB-b-PC的合成及结构与性能   总被引:1,自引:0,他引:1  
采用PET齐聚物的原位乙酰化法通过加入少量乙二醇(EG)合成了端羟基液晶聚合物PET/60PHB,并将其作为大单体,与双酚A及碳酸二苯酯通过熔融酯交换法,进一步制得了液晶嵌段共聚物PET/60PHB b PC.研究了合成规律,并借助粘度测定、DSC、偏光显微镜、X 光衍射和红外光谱分析等手段对合成的液晶嵌段共聚物进行了表征.研究表明,当PET齐聚物的ηinh=005~007dL/g,Ac2O/PHB(mol/mol)=13,EG/PET(mol/mol)=006时能获得颜色、液晶性、溶解性均很好的端羟基液晶聚合物PET/60PHB,以此液晶聚合物为原料,采用合适的配方与工艺,能获得粘度较高、液晶性较好,并且熔体流动性很好的液晶嵌段共聚物PET/60PHB b PC.通过偏光显微镜与X 光衍射观察,证明此嵌段共聚物呈现向列型液晶织构,但其液晶态织构与纯PET/60PHB、PET/60PHB和PC的混合物明显不同.此外,还初步建立了用红外的分析手段鉴定液晶聚合物PET/60PHB端基的方法.  相似文献   

10.
本文研究工作表明,聚乙二醇(PEG)作为聚对苯二甲酸乙二酯(PET)/聚对苯二甲酸丁二酯(PBT)共混体系的结晶促进剂.不仅使聚合物分子链运动容易而有利于结晶时定向排列,晶体生成速度加快.而且使成核剂的成核效率提高,晶核生成速度加快,晶核数目增多而晶体尺寸减小.此外,PEG还部分参与了聚酯的酯交换反应,在低用量时有利于聚合物特性粘数提高,而用量增大则引起聚酯降解.由于PEG的这些作用,共混体系在PEG为6.0%时的模量及γ-衰减强度最大.动态力学性能最好.  相似文献   

11.
The miscibility of polycarbonate PC and poly(butylene terephthalate) PBT is controversially discussed in the literature. Partial miscibility has been generally found in melt blends of the two polymers. However, in solution cast blends they were found to be immiscible. It is known that the transesterification takes place in the melt. Copolyesters formed by the transesterification change the compatibility of PC and PBT. In this work PC/PBT melt blends of various composition were investigated in dependence on the copolyester content by means of DSC and NMR. It can be shown that the time regime of the thermal treatment in the melt determines the transesterification degree. The PBT crystallization behavior is strongly influenced by both the PC and copolyester content. The glass transition temperatures of the PBT-rich and PC-rich phase approach each other with the increasing copolyester content. The analysis of the glass transition behavior permits the conclusion that PC and PBT are inherently immiscible provided that the copolyester content is exactly zero. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2161–2168, 1997  相似文献   

12.
The melting behavior of poly(butylene terephthalate) and its blends with bisphenol-A polycarbonate was investigated with differential scanning calorimetry. The aim of this work was to determine the equilibrium melting temperature and its dependence on the blend composition using the Hoffman-Weeks plots. It is shown that the critical analysis of various influences on the melting peak is necessary for the reorganization processes and crystallized content of blends. The experimental conditions and the corrections of measured temperatures were derived and discussed. It was found that the use of the extrapolated onset temperature Tm,o of the melting peak is more efficient than the maximum temperature Tm for the Hoffman-Weeks plots. The equilibrium values of pure PBT are determined to be Tom,o = 501 K and Tom = 506 K. The equilibrium temperatures of the blends do not show a depression with increasing PC content. Using the Nishi-Wang relation, the results can be qualitatively interpreted with a polymer-polymer interaction coefficient χ ≥ 0 between both components. A weak increase in the equilibrium temperature with increasing PC content was observed. A hypothesis to explain this is based on the possibility of a changed population of the different spherulites with various melting temperatures in dependence on PC content. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Flame retardancy of bisphenol A polycarbonate (PC)/poly(butylene terephthalate) (PBT) blends was improved by the addition of resorcinol bis(diphenyl phosphate) (RDP) and poly(phenylene ether) (PPO). A PC/PBT blend at 70/30 weight ratio obtained a V‐0 rating by the addition of 10 wt% RDP and 10 wt% PPO. The combination of 5 wt% methyl methacrylate‐butadiene‐styrene tercopolymer (MBS) with 3 wt% ethylene‐butylacrylate‐glycidyl methacrylate tercopolymer (PTW) causes a remarkable increase in toughness of the PC/PBT/RDP blend while maintaining a high rigidity. A detailed investigation of the flame‐retardant action of PC/PBT/RDP and PC/PBT/RDP/PPO blends was performed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), TGA‐FTIR, temperature‐programmed pyrolysis/gas chromatography/mass spectrometry (TPPy/GC/MS), and scanning electron microscopy/energy dispersive spectrometer (SEM/EDS). The results demonstrate that RDP induces a higher char yield at ca. 450 °C and synchronously increases the thermal stability of the blend with PPO. The flame‐retardant role of RDP in the condensed phase was discerned from TGA, FTIR, and SEM/EDS of the residues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Combining the excellent mechanical strengths of polyamide 6 (PA6) with the low water absorption of poly(butylene terephthalate) (PBT) was supposed to be a feasible way to prepare a high comprehensive performance material. However, the poor compatibility between PA6 and PBT resulted in low‐notched impact strength of PA6/PBT blends. Poly(n‐butyl acrylate)/poly(methyl methacrylate‐co‐methacrylic acid) (PBMMA), a core‐shell structured modifier with controlled particle sizes, was prepared by seed emulsion polymerization and confirmed by Transmission electron microscope (TEM). The PBMMA particles as toughening modifier and compatilizer were employed to toughen PA6/PBT blends. The notched impact strength of the PA6/PBT blends was significantly increased and the water absorption was reduced with the addition of PBMMA particles. With 23.0 wt% modifier loading, the notched impact strength of the blends was 25.66 kJ/m2, which was 4.04 times higher than that of pure PA6/PBT. Meanwhile, the water absorption of the blends was only 1.3%, dropping 53.6% compared with pure PA6 and reducing by 26.6% than PA6/PBT. Scanning electron microscope results showed that the PBMMA particles were dispersed in the PA6/PBT blends homogeneously, and the toughening mechanism was the cavitation of rubber particles and shear yielding of the matrix. Thermo‐gravimetric analysis analysis demonstrated that the compatibility between PA6 and PBT was improved with the addition of core‐shell PBMMA particles. The core‐shell particles could be used as an effective modifier to achieve the high toughness and low water absorption for PA6/PBT blends. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Poly(butylene terephthalate) (PBT)/polycarbonate (PC) samples, prepared via reactive blending in the presence of Ti‐ and Sm‐based catalysts, resulted in block copolymers whose block length decreased as the mixing time increased. A single homogeneous amorphous phase occurred when the blocks had monomeric sequences shorter than 10 units. Otherwise, a crystalline phase of PBT developed. Also, in poly(ethylene terephthalate) (PET)/PC blends previously studied, the miscibility was strictly correlated with the crystallizability of the system. Therefore, the miscibility of the PBT/PC and PET/PC blends was compared with respect to the tendency of the PBT and PET blocks to crystallize under isothermal conditions. The crystallization rate of the PBT/PC copolymers was faster than that of the PET/PC copolymers with similar block lengths. Accordingly, the minimum crystallizable sequence length of the PBT blocks was shorter than that of the PET blocks (18 vs 31 monomeric unit sequences). This behavior was interpreted as an effect of the more flexible PBT units, which had a greater tendency to fold and crystallize than the PET units. Therefore, PBT, the blocks of which tended to crystallize even if they were very short and phase‐separated, was characterized by a poorer compatibility with PC than that of PET. As a result, the block size had a fundamental role in determining the crystallizability and, therefore, phase behavior of the semicrystalline block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2821–2832, 2004  相似文献   

16.
The results of studies of equilibrium melting point and crystallization behavior of PBT/PETG blends are reported for the first time. A single composition‐dependent glass‐transition temperature is observed in the DSC studies. The isothermal crystallization studies of the blends indicate retardation in crystallization rate as evidenced by the increase in crystallization half time. The retardation in crystallization rate has been attributed to the miscibility in the molten state and the hindrance to the diffusion of crystallizable units. This assumption is further supported by the composition dependence of the crystallization half time. A composition‐dependent melting point depression has been observed which has been attributed to the possible thermodynamic and morphological effects. The interaction parameter calculated by analyzing equilibrium melting point depression shows composition‐dependent negative values confirming the miscibility of the systems. These results are in good agreement with our earlier results on mechanical and dynamic mechanical properties of PBT/PETG blends. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2439–2444, 1999  相似文献   

17.
Two poly(butylene terephthalate)/polycarbonate (PBT/PC) blends with different formulations were analyzed by modulated DSC (MDSC) and conventional DSC to determine differences in crystallization behavior. A significant difference (30°C in cold crystallization temperature) between the two samples was detectable by MDSC while no significant difference was seen by conventional DSC. That indicatesthe total heat flow from MDSC is not always equivalent to the heat flow from conventional DSC as we have assumed or seen before. The reason has not been fully understood, but may be related to unusual nucleation and crystallization induced by modulation. Alternative conventional DSC methods were developed and compared to the MDSC results.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthdayThe authors like to thank Drs. Bernhard Wunderlich and Robert Gallucci for helpful discussion, David Shaker and Mary Parsonage for some DSC experiments. Technical support from TA Instruments is also greatly appreciated.  相似文献   

18.
The miscibility and the isothermal crystallization kinetics for PBT/Epoxy blends have been studied by using differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The Avrami exponents n were obtained for PBT/Epoxy blends. An addition of small amount of epoxy resin (3%) leads to an increase in the number of effective nuclei, thus resulting in an increase in crystallization rate and a stronger trend of instantaneous three‐dimensional growth. For isothermal crystallization, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of PBT component in the PBT/Epoxy blends. The Lauritzen–Hoffman equation for DSC isothermal crystallization data revealed that PBT/Epoxy 97/3 had lower nucleation constant Kg than 100/0, 93/7, and 90/10 PBT/Epoxy blends. Analysis of the crystallization data of PBT/Epoxy blends showed that crystallization occurs in regime II. The fold surface free energy, σe = 101.7–58.0 × 10?3 J/m2, and work of chain folding, q = 5.79–3.30 kcal/mol, were determined. The equilibrium melting point depressions of PBT/Epoxy blends were observed and the Flory–Huggins interaction parameters were obtained. It indicated that these blends were thermodynamically miscible in the melt. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1320–1330, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号