首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermetallic cerium compounds Ce3-Pd3Bi4, CePdBi, and CePd2Zn3 were synthesized from the elements in sealed tantalum ampoules in an induction furnace. The compounds were characterized by X-ray powder and single crystal diffraction: CeCo3B2 type (ordered version of CaCu5), P6/mmm, a = 538.4(4), c = 427.7(4) pm, wR2 = 0.0540, 115 F 2 values, 9 variables for CePd2Zn3 and Y3Au3Sb4 type, I \({\bar 4}\)3d, a = 1005.2(2) pm, w R2 = 0.0402, 264 F 2 values, 9 variables for Ce3Pd3Bi4, and MgAgAs type, a = 681.8(1) pm for CePdBi. The bismuthide structures are build up from three-dimensional networks of corner-sharing PdBi4 tetrahedra with Pd–Bi distances of 281 (Ce3Pd3Bi4) and 296?pm (CePdBi), respectively. The cerium atoms are located in larger voids of coordination number 12 (Ce3Pd3Bi4) and 10 (CePdBi). In CePd2Zn3 the cerium atoms fill larger channels within the three-dimensional [Pd2Zn3] network with 18 (6 Pd + 12 Zn) nearest neighbors. The three compounds contain stable trivalent cerium with experimental magnetic moments of μeff = 2.70(2), 2.48(1), and 2.49(1) μB/Ce atom for CePd2Zn3, Ce3Pd3Bi4, and CePdBi, respectively. Susceptibility and specific heat data gave no hint for magnetic ordering down to 2.1?K.  相似文献   

2.

Abstract  

The intermetallic zinc compounds La3Pd4Zn4 and La3Pt4Zn4 were synthesized by induction melting of the elements in sealed tantalum tubes. The structures were refined from X-ray single-crystal diffractometer data: Gd3Cu4Ge4 type, Immm, a = 1,440.7(5), b = 743.6(2), c = 419.5(2) pm, wR 2 = 0.0511, 353 F 2 for La3Pd4Zn4; and a = 1,439.9(2), b = 748.1(1), c = 415.66(6) pm, wR 2 = 0.0558, 471 F 2 for La3Pt4Zn4 with 23 variables per refinement. The palladium (platinum) and zinc atoms build up a three-dimensional polyanionic [Pd4Zn4] (260–281 pm Pd–Zn) and [Pt4Zn4] (260–279 pm Pt–Zn) network in which the lanthanum atoms fill cavities of CN 14 (6 Pd/Pt + 8 Zn for La1) and CN 12 (6 Pd/Pt + 6 Zn for La2), respectively. The copper position of the Gd3Cu4Ge4 type is occupied by zinc and the two crystallographically independent germanium sites by palladium (platinum), a new coloring pattern for this structure type. Within the [Pd4Zn4] and [Pt4Zn4] the Pd2 and Pt2 atoms form Pd2–Pd2 (291 pm) and Pt2–Pt2 (296 pm) dumbbells. The structures of La3Pd4Zn4 and La3Pt4Zn4 are discussed with respect to the prototype Gd3Cu4Ge4 and the Zintl phase Sr3Li4Sb4. Temperature-dependent magnetic susceptibility measurements indicate diamagnetism for La3Pt4Zn4 and Pauli paramagnetism for La3Pd4Zn4.  相似文献   

3.

Abstract  

The palladium-rich cadmium compounds La6Pd13Cd4 and Ce6Pd13Cd4 were synthesized by induction melting the elements in sealed tantalum ampoules and subsequent annealing. They were characterized by X-ray powder and single-crystal diffraction: Na16Ba6N type, Im[`3] mIm\overline{3} m, a = 988.12(9) pm, wR2 = 0.0463, 225 F 2 values, and 12 variables for La6Pd13Cd4, and a = 982.1(2) pm, wR2 = 0.0521, 215 F 2 values, and 12 variables for Ce6Pd13Cd4. The striking structural motifs are palladium-centred La6 and Ce6 octahedra, which are packed in a bcc fashion. Further palladium and cadmium atoms built up three-dimensional [Pd3Cd] networks in which the La6Pd and Ce6Pd octahedra are embedded. Chemical bonding analyses show that the dominant interaction occurs within the palladium-centred RE 6 octahedra, while weaker bonding exists between them.  相似文献   

4.
Compounds Ce2TiO5, Ce2Ti2O7, and Ce4Ti9O24 were prepared by heating appropriate mixtures of solids containing Ce4+ and Ti3+ or Ti which were placed in a platinum-silica-ampoule combination at T = 1250°C (3d) under vacuum. The new compounds were characterized by powder patterns. We obtained Ce2TiO5 which is isotypic to La2TiO5 and crystallizes in the Y2TiO5-type (space group Pnma) with a = 10.877(6) Å, b = 3.893(1) Å, c = 11.389(8) Å, Z = 4. Ce2Ti2O7 is isotypic to La2Ti2O7 and crystallizes in the monoclinic Ca2Nb2O7 type (space group P 21) with a = 7.776(6) Å, b = 5.515(4) Å, c = 12.999(6) Å, β = 98.36(5), Z = 4. The compound Ce4Ti9O24 crystallizes orthorhombic with a = 14.082(4) Å, b = 35.419(8) Å, c = 14.516(4) Å, Z = 16. The new cerium titanate Ce4Ti9O24 is isotypic to Nd4Ti9O24 (space group Fddd (No. 70)) which represents a novel type of structure.  相似文献   

5.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7∶0.03Eu,y Ce3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7∶0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f 65d1-4f 7跃迁,590~725 nm红光区窄带谱源于Eu3+的5D0-7FJ(J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7∶0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7∶0.03Eu,y Ce3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7∶0.03Eu,0.01Ce3+的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

6.
The ternary indium compounds RE4Pd10In21 (RE = La, Ce, Pr, Nd, Sm) were synthesized from the elements in glassy carbon crucibles in a high‐frequency furnace. Single crystals of Sm4Pd10In21 were obtained from an indium flux. An arc‐melted precursor alloy of the starting composition ~SmPd3In6 was annealed with a slight excess of indium at 1200 K followed by slow cooling (5 K/h) to 870 K. All compounds were investigated by X‐ray powder diffraction and the structures were refined from single crystal diffractometer data. The RE4Pd10In21 indides are isotypic with Ho4Ni10Ga21, space group C2/m: a = 2314.3(2), b = 454.70(7), c = 1940.7(2) pm, β = 133.43(2)°, wR2 = 0.0681, 1678 F2 values for La4Pd10In21, a = 2308.2(1), b = 452.52(4), c = 1944.80(9) pm, β = 133.40(1)°, wR2 = 0.0659, 1684 F2 values for Ce4Pd10In21, a = 2303.8(2), b = 450.78(4), c = 1940.6(1) pm, β = 133.39(1)°, wR2 = 0.0513, 1648 F2 values for Pr4Pd10In21, a = 2300.2(2), b = 449.75(6), c = 1937.8(2) pm, β = 133.32(1)°, wR2 = 0.1086, 1506 F2 values for Nd4Pd10In21, and a = 2295.6(2), b = 447.07(4), c = 1935.7(1) pm, β = 133.16(1)°, wR2 = 0.2291, 2350 F2 values for Sm4Pd10In21, with 108 variables per refinement. All palladium atoms have a trigonal prismatic coordination. The strongest bonding interactions occur for the Pd—In and In—In contacts. The structures are composed of covalently bonded three‐dimensional [Pd10In21] networks in which the rare earth metal atoms fill distorted pentagonal channels. The crystal chemistry and chemical bonding in these indides is briefly discussed. Magnetic susceptibility measurements show diamagnetism for La4Pd10In21 and Curie‐Weiss paramagnetism for Ce4Pd10In21, Pr4Pd10In21, and Nd4Pd10In21. The neodymium compound orders antiferromagnetically at TN = 4.5(2) K and undergoes a metamagnetic transition at a critical field of 1.5(2) T. All the RE4Pd10In21 indides studied are metallic conductors.  相似文献   

7.
The stannides YNi x Sn2 (x = 0, 0.14, 0.21, 1) were prepared by arc-melting of the pure elements. They were characterized through X-ray powder and single crystal data: ZrSi2 type, space group Cmcm, a = 438.09(6), b = 1629.6(4), c = 430.34(7) pm, wR2 = 0.0607, 386 F 2 values, 14 variables for YSn2, CeNiSi2 type, Cmcm, a = 440.6(1), b = 1640.3(1), c = 433.0(1) pm, wR2 = 0.0632, 416 F 2 values, 19 variables for YNi0.142(7)Sn2, a = 441.0(1), b = 1646.3(1), c = 434.6(1) pm, wR2 = 0.0491, 287 F 2 values, 19 variables for YNi0.207(7)Sn2, and LuNiSn2 type, space group Pnma, a = 1599.3(3), b = 440.89(5), c = 1456.9(2) pm, wR2 = 0.0375, 1538 F 2 values, 74 variables for YNiSn2. The YSn2 structure contains Sn1–Sn1 zig-zag chains (297 pm) and planar Sn2 networks (307 pm). The stannides YNi0.142(7)Sn2 and YNi0.207(7)Sn2 are nickel filled versions of YSn2. The nickel atoms have a distorted pyramidal tin coordination with Ni–Sn distances ranging from 220 to 239 pm. New stannide YNiSn2 adopts the LuNiSn2 type. The nickel and tin atoms build up a complex three-dimensional [NiSn2] network in which the yttrium atoms fill distorted pentagonal and hexagonal channels. Within the network all nickel atoms have a distorted square pyramidal tin coordination with Ni–Sn distances ranging from 247 to 276 pm. Except the Sn4 atoms which are located in a tricapped trigonal Y6 prism, all tin atoms have between 4 and 5 tin neighbors between 297 and 350 pm. 119Sn M?ssbauer spectroscopic data of YNi x Sn2 show a decreasing isomer shift (from 2.26 to 2.11 mm/s) from YSn2 to YNiSn2, indicating decrease of the s electron density at the tin nuclei.  相似文献   

8.
Summary. The stannides YNi x Sn2 (x = 0, 0.14, 0.21, 1) were prepared by arc-melting of the pure elements. They were characterized through X-ray powder and single crystal data: ZrSi2 type, space group Cmcm, a = 438.09(6), b = 1629.6(4), c = 430.34(7) pm, wR2 = 0.0607, 386 F 2 values, 14 variables for YSn2, CeNiSi2 type, Cmcm, a = 440.6(1), b = 1640.3(1), c = 433.0(1) pm, wR2 = 0.0632, 416 F 2 values, 19 variables for YNi0.142(7)Sn2, a = 441.0(1), b = 1646.3(1), c = 434.6(1) pm, wR2 = 0.0491, 287 F 2 values, 19 variables for YNi0.207(7)Sn2, and LuNiSn2 type, space group Pnma, a = 1599.3(3), b = 440.89(5), c = 1456.9(2) pm, wR2 = 0.0375, 1538 F 2 values, 74 variables for YNiSn2. The YSn2 structure contains Sn1–Sn1 zig-zag chains (297 pm) and planar Sn2 networks (307 pm). The stannides YNi0.142(7)Sn2 and YNi0.207(7)Sn2 are nickel filled versions of YSn2. The nickel atoms have a distorted pyramidal tin coordination with Ni–Sn distances ranging from 220 to 239 pm. New stannide YNiSn2 adopts the LuNiSn2 type. The nickel and tin atoms build up a complex three-dimensional [NiSn2] network in which the yttrium atoms fill distorted pentagonal and hexagonal channels. Within the network all nickel atoms have a distorted square pyramidal tin coordination with Ni–Sn distances ranging from 247 to 276 pm. Except the Sn4 atoms which are located in a tricapped trigonal Y6 prism, all tin atoms have between 4 and 5 tin neighbors between 297 and 350 pm. 119Sn M?ssbauer spectroscopic data of YNi x Sn2 show a decreasing isomer shift (from 2.26 to 2.11 mm/s) from YSn2 to YNiSn2, indicating decrease of the s electron density at the tin nuclei.  相似文献   

9.
The crystal structures of the Rh[(EtO)2PS2]3 (I) and Co[(PhO)2PS2]3 (II) chelate compounds were determined from X-ray diffraction (XRD) data (CAD-4 diffractometer, MoK β radiation, 1193 F hkl , R = 0.0516 for I and 513 F hkl , R = 0.0305 for II). Crystals I are monoclinic: a = 14.233(3) Å, b = 13.570(3) Å, c = 14.272(3) Å; β = 90.66(3)°, V = 2756.3(10) Å3, Z = 4, ρcalc = 1.587 g/cm3, space group C2/c. Crystals II are trigonal: a = 15.149(2) Å, c = 30.306(6) Å; V = 6023.2(16) Å3, Z = 6, ρcalc = 1.493 g/cm3, space group R3ˉ. Structures I and II consist of discrete mononuclear molecules. The coordination polyhedra of the M atoms (M = Rh, Co) are distorted octahedra formed by six sulfur atoms of three cyclic bidentate (RO)2 PS2 ligands. Original Russian Text Copyright ? 2008 by R. F. Klevtsova, L. A. Glinskaya, and S. V. Larionov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 2, pp. 330–334, March–April, 2008.  相似文献   

10.
Crystal structures of chelate compounds Ni[(iso-C4H9)2PS2]2 (I) and Pd[(iso-C4H9)2PS2]2 (II) have been determined by X-ray diffraction: diffractometer X8-APEX, MoK α∔ -radiation, 1048 F hkl , R = 0.0544 for I and CAD-4 diffractometer, MoK α∔ -radiation, 1283 F hkl , R = 0.0347 for II. The crystals are rhombic: a = 12.921(5) Å, b = 17.094(5) Å, c = 22.971(5) Å; V = 5074(3) Å3, Z = 8, calc = 1.250 g/cm3, space group Pbca for I and a = 13.312(3) Å, b = 16.130(7) Å, c = 23.171(5) Å; V = 4975(3) Å3, Z = 8, ρcalc = 1. 208 g/cm3, space group Pbca for II. The structures of I and II are formed by discrete mononuclear molecules. Coordination cores MS4 (M = Ni, Pd) approach planar square configurations. Original Russian Text Copyright ? 2005 by L. A. Glinskaya, T. G. Leonova, T. E. Kokina, R. F. Klevtsova, and S. V. Larionov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 4, pp. 715–720, July–August, 2005.  相似文献   

11.
Single crystals of diammonium tetranitratouranylate (NH4)2[UO2(NO3)4] (I) and a new diammonium tetranitratouranylate complex with 18-crown-6 [(NH4)(18C6)]2[UO2(NO3)4] (II) have been synthesized by the reaction of diaquadinitratouranyl tetrahydrate with ammonium nitrate in a nitric acid solution and the reaction of the same reagents with 18C6 in an ethanol solution, respectively. The X-ray diffraction analysis of compounds I and II has been performed. Crystals of compounds I and II are monoclinic, Z = 2, space group P21/n, a = 6.4075(5) ?, b = 7.7851(7) ?, c = 12.4461(12) ?, β = 101.239(1)°, V = 608. 94(9) ?3 for compound I and a = 10.542(9) ?, b = 8.590(8) ?, c = 22.5019(19) ?, β = 101.632(1)°, V = 2058.3(3) ?3 for compound II. The [UO2(NO3)4]2− complex anion in compounds I and II contains two monodentate and two bidentate cyclic nitrato groups, and the coordination number of uranyl is 6. The 18C6 molecule in the structure of compound II has the classic crown conformation and combined with the ammonium ion by three hydrogen bonds. Compounds I and II formed by electrostatic attraction forces between counterions are stabilized by (NH4+)NH...O(NO3) interionic hydrogen bonds.  相似文献   

12.
The compound Bi3W2O10.5 was synthesized by the solid-state technique from Bi2O3 and WO3 in stoichiometric quantities. Single crystals were grown by the melt-cooling technique and the crystal structure was solved in the tetragonalI4/m space group witha = 3.839 (1) ?,c = 16.382 (5) ?,V = 241.4 (1) ?3,Z = 4 and was refined to anR index of 0.0672. The structure represents a modification of the Aurivillius phase and consists of [Bi2O2]2+ units separated by WO8 polyhedra. a.c. impedance studies indicate oxide ion conductivity of 2.91 10−5 Scm−1 at 600°C. Dedicated to Prof J Gopalakrishnan on his 62nd birthday.  相似文献   

13.
The compounds Ln2AuP3 were synthesized by reaction of the elemental components in evacuated silica tubes. Their crystal structures were determined from single‐crystal diffractometer data. The compounds with Ln = La, Ce, and Pr crystallize with an orthorhombic U2NiC3 type structure (Pnma, Z = 4). The structure refinement for Ce2AuP3 resulted in a = 774.14(6) pm, b = 421.11(4) pm, c = 1612.3(1) pm, R = 0.019 for 1410 structure factors and 38 variable parameters. For Pr2AuP3 a residual of R = 0.024 was obtained. Nd2AuP3 crystallizes with a monoclinic distortion of this structure: P21/c, Z = 4, a = 416.14(4) pm, b = 768.87(6) pm, c = 1647.1(2) pm, β = 104.06(1)°, R = 0.022 for 1361 F values and 56 variables. The near‐neighbor coordinations of the two structures are nearly the same. In both structures the gold and phosphorus atoms form two‐dimensionally infinite nets, where the gold atoms are tetrahedrally coordinated by phosphorus atoms with Au–P distances varying between 245.8 and 284.2 pm. Two thirds of the phosphorus atoms form pairs with single‐bond distances varying between 217.7 and 218.9 pm. Thus, using oxidation numbers the structures can be rationalized with the formulas (Ln+3)2[AuP3]–6 and (Ln+3)2Au+1(P2)–4P–3. Accordingly, La2AuP3 is a diamagnetic semiconductor. Pr2AuP3 is semiconducting with an antiferromagnetic ground state, showing metamagnetism with a critical field of Bc = 0.5(± 0.1) T. In contrast, the cerium compound is a metallic conductor, even though its cell volume indicates that the cerium atoms are essentially trivalent, as is also suggested by the ferro‐ or ferrimagnetic behavior of the compound.  相似文献   

14.
New indides Ce3Ge0.66In4.34 and Ce11Ge4.74In5.26 were synthesized from the elements by arc‐melting and subsequent annealing at 870 K. Single crystals were grown through special annealing procedures in sealed tantalum tubes in a high‐frequency furnace. Both compounds were investigated on the basis of X‐ray powder and single crystal data: I4/mcm, La3GeIn4 type, a = 848.8(1), c = 1192.0(2) pm, Z = 4, wR2 = 0.0453, 499 F2 values, 17 variables for Ce3Ge0.66In4.34 and I4/mmm, Sm11Ge4In6 type (ordered version of the Ho11Ge10 type), a = 1199.3(2), c = 1662.0(3) pm, wR2 = 0.0507, 1217 F2 values, 41 variables for Ce11Ge4.74In5.26. The Ce3Ge0.66In4.34 structure shows a mixed Ge/In occupancy on the 4c Wyckoff position. This site is octahedrally coordinated by cerium atoms. These octahedra share all edges, leading to a three‐dimensional network. The latter is penetrated by a two‐dimensional indium substructure which consists of flattened tetrahedra at In–In distances of 291 and 300 pm. The Ce11Ge4.74In5.26 structure contains three crystallographically independent germanium sites. The latter are coordinated by eight or nine cerium neighbors. These CN8 and CN9 polyhedra are condensed to a complex network which is penetrated by a three‐dimensional indium network with In–In distances of 301–314 pm. The 16m site shows a mixed In/Ge occupancy. Chemical bonding in both compounds is dominated by the p elements. Both ternaries studied exhibit localized magnetism due to the presence of Ce3+ ions. The compound Ce3GeIn4 remains paramagnetic down to 1.72 K, whereas Ce11Ge4In6 orders ferromagnetically at TC = 7.5 K.  相似文献   

15.
The compounds BiMO2NO3, with M=Pb, Ca, Sr, and Ba, were obtained as single-phase products from solid-state reactions in an atmosphere of nitrous gases. The oxide nitrates with Pb and Ca crystallize in the tetragonal space group I4/mmm with two formula units per unit cell; the oxide nitrates with Sr and Ba crystallize in the orthorhombic space group Cmmm with four formula units per unit cell. Lattice parameters at room temperature are a=397.199(4), c=1482.57(2) pm for M=Pb; a=396.337(5), c=1412.83(3) pm for M=Ca; a=1448.76(3), b=567.62(1), c=582.40(1) pm for M=Sr and a=1536.50(8), b=571.67(3), c=597.55(3) pm for M=Ba. The structures, which were refined by powder X-ray diffraction, consist of alternating [BiMO2]+ and [NO3] layers stacked along the direction of the long axis. IR and thermogravimetric data are also given. The various M2+ cations in BiMO2NO3 are compatible with each other; therefore and because of their layer-type structure, these compounds are interesting precursors for oxide materials, e.g., the HTSC compounds (Bi,Pb)2Sr2Can−1CunOx.  相似文献   

16.
The novel alkaline earth silicate borate cyanides Ba7[SiO4][BO3]3CN and Sr7[SiO4][BO3]3CN have been obtained by the reaction of the respective alkaline earth metals M=Sr, Ba, the carbonates MIICO3, BN, and SiO2 using a radiofrequency furnace at a maximum reaction temperature of 1350°C and 1450°C, respectively. The crystal structures of the isotypic compounds MII7[SiO4][BO3]3CN have been determined by single-crystal X-ray crystallography (P63mc (no. 186), Z=2, a=1129.9(1) pm, c=733.4(2) pm, R1=0.0336, wR2=0.0743 for MII=Ba and a=1081.3(1) pm, c=695.2(1) pm, R1=0.0457, wR2=0.0838 for MII=Sr). Both ionic compounds represent a new structure type, and they are the first examples of silicate borate cyanides. The cyanide ions are disordered and they are surrounded by Ba2+/Sr2+ octahedra, respectively. These octahedra share common faces building chains along [001]. The [BO3]3− ions are arranged around these chains. The [SiO4]4− units are surrounded by Ba2+/Sr2+ tetrahedra, respectively. The title compounds additionally have been investigated by 11B, 13C, 29Si, and 1H MAS-NMR as well as IR and Raman spectroscopy confirming the presence of [SiO4]4−, [BO3]3−, and CN ions.  相似文献   

17.
Manganites NdM3Sr3Mn4O12 and NdM3Ba3Mn4O12 (M = Li, Na, K) were synthesized by a ceramic method from the corresponding oxides and carbonates. The X-ray diffraction analysis showed that all the compounds crystallized in the tetragonal crystal system with the following lattice parameters: NdLi3Sr3Mn4O12: a = 10.88 ?, c = 9.52 ?, V o = 1126.9 ?3, Z = 4, ρX = 4.95 g/cm3, ρpycn = 4.87 ± 0.05 g/cm3; NdNa3Sr3Mn4O12: a = 10.73 ?, c = 10.66 ?, V o = 1227.3 ?3, Z = 4, ρX = 4.80 g/cm3, ρpycn = 4.73 ± 0.07 g/cm3; NdK3Sr3Mn4O12: a = 10.87 ?, c = 11.71 ?, V o = 1382.6 ?3, Z = 4, ρX = 4.50 g/cm3, ρpycn = 4.43 ± 0.09 g/cm3; NdLi3Ba3Mn4O12: a = 10.97 ?, c = 10.34 ?, V o = 1244.3 ?3, Z = 4, ρX = 5.33 g/cm3, ρpycn = 5.23 ± 0.09 g/cm3; NdNa3Ba3Mn4O12: a = 10.99 ?, c = 11.15 ?, V o = 1346.7 ?3, Z = 4; ρX = 5.11 g/cm3, ρpycn = 5.05 ± 0.06 g/cm3; NdK3Ba3Mn4O12: a = 10.997 ?; c = 13.80 ?, V o = 1668.9 ?3, Z = 4, ρX = 4.32 g/cm3, ρpycn = 4.26 ± 0.07 g/cm3. Original Russian Text ? B.K. Kasenov, E.S. Mustafin, M.A. Akubaeva, S.T. Edil’baeva, Sh.B. Kasenova, Zh.I. Sagintaeva, S.Zh. Davrenbekov, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 424–427.  相似文献   

18.
NaPd3O4, Na2PdO3 and K3Pd2O4 have been prepared by solid-state reaction of Na2O2 or KO2 and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd3O4 (space group Pmn, a=5.64979(6) Å, Z=2) is isostructural to NaPt3O4. It consists of NaO8 cubes and PdO4 squares, corner linked into a three-dimensional framework where the planes of neighboring PdO4 squares are perpendicular to each other. Na2PdO3 (space group C2/c, a=5.3857(1) Å, b=9.3297(1) Å, c=10.8136(2) Å, β=99.437(2)°, Z=8) belongs to the Li2RuO3-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na+ and Pd4+ cations alternate with Na3 layers along the c-axis. Na2PdO3 exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K3Pd2O4, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) Å, b=9.1772(12) Å, c=11.3402(12) Å, Z=4). Its structure is composed of planar PdO4 units connected via common edges to form parallel staggered PdO2 strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K3Pd2O4 reveal a Curie-Weiss behavior in the temperature range above 80 K.  相似文献   

19.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

20.
A single crystal X-ray diffraction study is carried out for [Pd(P(i-Pr)3)2(acac)]BF4, T = 150(2) K. Crystal data: a = 10.2935(4) ?, b = 11.3591(5) ?, c = 13.8728(6) ?, α = 89.154(2)°, β = 68.448(1)°, γ = 85.032(1)°, P-1 space group, V = 1502.75(11) ?3, Z = 2, d x = 1.354 g/cm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号