首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用电弧熔炼法制备了Nd3.6Pr5.4Fe83Co3B5合金铸锭,然后利用熔旋快淬法在铜辊转速V=20m/s下制备了Nd3.6Pr5.4Fe83Co3B5薄带.快淬带主要由软磁相α-Fe和Nd2Fe14B型的硬磁相组成.采用直流退磁剩磁曲线方法分析了样品在反磁化过程中的可逆与不可逆磁化部分,并研究了软磁相和硬磁相的反磁化行为,得到样品的不可逆磁化形核场Hno约为440kA/m.同时研究了样品的磁黏滞性,结果表明由于软磁相的存在使得热激活体积较大. 关键词:  相似文献   

2.
《Physica B: Condensed Matter》2000,275(1-3):248-252
The energetic model of ferromagnetic hysteresis calculates the magnetic state of materials by minimizing the total energy function for statistical domain behavior. The approach shows good agreement with the magnetization curves of mechanically alloyed Pr9Fe85B6 powder, heat treated at different temperatures.  相似文献   

3.
用熔体快淬法制备了纳米复合永磁样品Pr9Fe74Co12B5 与Pr9Fe74Co12B5Sn0.5,分析了样品的起始磁化、反磁化过程,测得样品的总磁化率、可逆磁化率以及样品的磁黏滞性.结果表明,两样品在室温下均表现为单一硬磁相磁化行为,在低温下表现为双相行为,且由于添加Sn后使晶粒均匀化从而导致样品低温下的双相行为更加明显.添加Sn后引起样品中软磁相含量和软磁相晶粒尺寸的增加,使磁化反转中可逆磁化部分增多,且使反磁化形核场降低.磁黏滞性研究表明,热激活体积与软磁相晶粒的大小有关. 关键词: 纳米复合永磁 磁化反转 磁粘滞  相似文献   

4.
The dynamic magnetization processes of nanocrystalline Fe80Ge3Nb10B7 alloys after annealing at different temperatures are studied through the permeability spectroscopy. Three steps of crystallization are found when amorphous Fe80Ge3Nb10B7 alloys are heated from 300to 1200 K. The dominant magnetization process varies with different annealing temperatures. Domain wall bulging is the main magnetization mechanism under weak applied field. When the applied field exceeds pinning field Hp, the depinning-involved domain wall displacement occurs. Different annealing temperature results in different Hp. The lower value of μ′ and high relaxation frequency after heating at 923 and 973 K are due to the strengthened domain wall pinning and the increase of magnetocrystalline anisotropy.  相似文献   

5.
Nanostructured Pr8Fe86−xVxB6−yCy (x=0, 1; y=0, 1) ribbons composed of Pr2Fe14B and α-Fe phases with a high coercivity are fabricated by direct melt spinning. The effects of a single addition of V and a combined addition of V and C on the structures and magnetic properties of melt-spun Pr8Fe86VB6−xCx (x=0 and 1) ribbons have been investigated. Compared with addition-free ribbons, 1 at% V addition is found to reduce the grain sizes of the samples and improve their magnetic properties due to a strong exchange coupling between the hard and the soft phase. A remanence ratio of 0.82, a coercive field of 6.2 kOe and a maximum energy product of 23.4 MGOe in melt-spun Pr8Fe85VB6 ribbons are obtained at room temperature. The combined addition of V and C is found to lead to the formation of an intermediate phase of VC at grain boundaries, which appears as a pinning barrier during magnetization and results in an increase of the coercivity value to 6.9 kOe for melt-spun Pr8Fe85VB5C ribbons.  相似文献   

6.
The magnetic hysteresis loops have been investigated in the temperature range between 4.2 and 575 K for aligned sintered permanent magnets of nominal composition Nd15Fe77B8 and for isotropic melt-spun ribbons of composition Nd15Fe76B9. The measured temperature and field dependence of the coercive field is analysed within the framework of theoretical results for nucleation fields of the ideal Nd2Fe14B matrix and, of disturbed surface regions of Nd2Fe14B grains. Furthermore the pinning of domain walls at thin soft magnetic grain boundary phases is considered for the high temperature range. It is concluded that for both types of NdFeB magnets the relevant magnetic hardening mechanisms at lower temperatures are nucleation processes in magnetically inhomogeneous regions whereas at higher temperatures the pinning of domain walls at grain boundaries predominates. The critical temperature where the change of nucleation hardening to pinning hardening occurs depends sensitivity on the crystal anisotropy, the grain boundary microstructure and the macroscopic grain- and multi phase arrangements.  相似文献   

7.
The intrinsic nucleation and instability fields of uniaxial single domain particles are determined including the effects of the second anistropy constant and of oblique applied magnetic fields. The theoretical results for the angular dependences of the nucleation and pinning fields are compared with the angular dependence of the coercive field as measured for oriented sinter magnets of composition Fe77Nd15B8. The experimental results are compatible with the assumption that at room temperature the coercive field in Fe77Nd15B8 is determined by a nucleation mechanism.  相似文献   

8.
钟文定  刘尊孝 《物理学报》1992,41(6):1005-1011
测量了赝二元立方Laves相化合物TbGdFe2(0≤x≤1)的磁化曲线、居里温度和矫顽力随温度的变化。发现化合物由TbFe2向GdFe2过渡时,样品的饱和磁化强度几乎直线下降。在所有成分下,Fe原子的磁矩都是常数(μFe=1.60±0.04μB),但Tb原子的磁矩,由于受晶场影响,却小于自由离子的值(gJ=9.OμB)。矫顽力由两部分组成:一为畴壁受Peierls势垒和稀土 关键词:  相似文献   

9.
The Rayleigh region, the coercive field and the magnetization curves of the amorphous, ferromagnetic alloys Fe80−xNixB20 and Fe40Ni40P14B6 have been investigated as a function of the temperature and composition. It is shown that the characteristic parameters of the magnetization curves can be described by the statistical potential theory as developed previously for the movement of domain walls. Our experimental results are compatible with the assumption that the obstacles opposing the domain wall displacements are elastic stress centres produced during the rapid quenching process of the amorphous alloys.  相似文献   

10.
Sintered magnets based on the compositions Pr16Fe76B8 and Pr16Fe75.5B8Zr0.5 were produced using the hydrogen decrepitation process. Sintered magnets prepared under specific processing conditions from the zirconium-free alloy exhibited excellent remanence (1.22 T), intrinsic coercivity (1.22 T) and energy product (278 kJm−3). The squareness factor of magnets prepared from the Pr16Fe75.5B8Zr0.5 alloy was improved considerably (0.96). This investigation also shows the remarkable influence of zirconium addition on the intrinsic coercivity of these permanent magnets.  相似文献   

11.
The effect of refractory element addition on phase transformation, crystallization behavior and magnetic properties of Pr8.5Fe81.5B10 (addition-free) and Pr8.5Fe81.5M2B10 (M=V, Cr, Nb, Zr, Ti) ribbons has been investigated. The annealed addition-free ribbon as well as the samples with V or Cr additions are mainly composed of the metastable Pr2Fe23B3 phase, whereas annealed ribbons with Nb, Zr or Ti additions primarily consist of Pr2Fe14B and a minor amount of Fe3B/boride. The complete suppression of the metastable Pr2Fe23B3 phase due to Nb, Zr or Ti additions leads to a significant enhancement of the magnetic properties. For example, the remanence, the coercivity and the energy product are remarkably increased from 2.5 kG, 0.4 kOe and 0.2 MG Oe for the addition-free material to 9.2 kG, 4.7 kOe and 7.6 MG Oe for the specimens with Nb addition. The successful elimination of the metastable Pr2Fe23B3 phase is believed to profit from two factors: (a) Nb, Zr or Ti atoms substitute the Pr site, comparatively increase the Pr content, and thus inhibit the nucleation of Pr-lean Pr2Fe23B3 phases, and (b) the formation of Nb, Zr, or Ti borides consumes some part of B, which hinders the generation of the B-rich Pr2Fe23B3 phase.  相似文献   

12.
We have developed a simple numerical model for simulating domains as well as remanence and viscosity curves in the slow dynamics regime, for thin films characterized by perpendicular magnetization and irregular domain configurations due to strong disorder. The physical system is represented as constituted of identical switching units, described by proper switching field distributions and energy barrier laws for pinning and nucleation processes. The model also includes an effective field which accounts for magnetic forces proportional to magnetization, on average. Simulations of DCD curves show that when the reversal of magnetization is governed by pinning, the coercive field depends on the physical size of the film area on which the external field is applied. In the case of viscosity phenomena described by a linear energy barrier law associated with a single predominant reversal process (pinning or nucleation), universal viscosity curves can be generated by properly transforming the DCD curve of the system. We also demonstrate that a reduction of the maximum viscosity coefficient can coexist with a reduction of the energy barrier heights.  相似文献   

13.
Interaction of a single magnetic domain wall with an inhomogeneous magnetic field and distribution of local nucleation fields along glass-coated Fe77.5−xNixB15Si7.5 (x=0, 27.9, 34.9) microwires were experimentally studied. It was shown that the wall separating two axial domains and moving along the wire can be stopped by an inhomogeneous magnetic field. The wall remains stable and trapped in a local potential minimum after external fields are switched off. Wall coercivity increases with Ni content. For all samples the minimum of critical field for axial magnetization reversal was observed near the end of the wire. For samples with non-zero Ni content a distribution of nucleation fields lower than 950 A/m was observed in regions far enough from the wire ends. In Ni-free samples the nucleation fields were higher than 950 A/m.  相似文献   

14.
Magnetic properties, microstructure, and phase evolution of Pr lean and boron-enriched PrxFebal.TiyB20−x (x=4–9; y=2.5–5) melt-spinning ribbons with nanostructures have been investigated. Based on thermal magnetic analysis (TMA), for y=2.5, two phases, namely Pr2Fe14B and α-Fe, were found for ribbons with x=9, while additional two metastable phases, Pr2Fe23B3 and Fe3B, existed for x=4, 7 and 8. With the decrease of Pr content, the remanence increases but coercivity decreases. The optimal properties of Br=9.5 kG, iHc=10.7 kOe, and (BH)max=17.8 MG Oe are achieved in Pr9Febal.Ti2.5B11 nanocomposites. On the other hand, higher Ti substitution for Fe in Pr7Febal.TiyB13 ribbons could refine the grain size and suppress the metastable Pr2Fe23B3 and Fe3B phases effectively. The excellent permanent magnetic properties are mainly dominated by the nanoscaled microstructures and the coexistence of sufficient magnetically soft phases, Fe3B, Pr2Fe23B3 and α-Fe, with magnetically hard Pr2Fe14B phase.  相似文献   

15.
The magnetic properties of an isotropic, epoxy resin bonded magnets made from Pr-Fe-Co-Nb-B powder were investigated. The magnetization reversal process and magnetic parameters were examined by measurements of the initial magnetization curve, major and minor hysteresis loops and sets of recoil curves. From the initial magnetization curve and the field dependencies of the reversible and irreversible magnetization components derived from the recoil loops it was found that the magnetization reversal process is the combination of the nucleation of reversed domains and pinning of domain walls at the grain boundaries and the reversible rotation of magnetization vector in single domain grains. The interactions between grains were studied by means of δM plots. The nonlinear behavior of δM curve approve that the short range intergrain exchange coupling interactions are dominant in a field up to the sample coercivity.The interaction domains and fine magnetic structure were revealed as the evidence of exchange coupling between soft α-Fe and hard magnetic Nd2Fe14B grains.  相似文献   

16.
We have investigated the grain size dependence of the characteristic magnetic properties as the initial susceptibility, the coercivity and the Rayleigh constant of nanocrystalline Fe73.5Cu1Nb3Si13.5B9. Before there is any significant change in the grain size all the magnetic properties change their values by several orders of magnitude due to a change of the magnetization process. At low annealing temperatures (small grains) we found irreversible domain wall movements which could be well described by the statistical potential theory. After higher annealing temperatures the magnetic properties changed drastically and the magnetization occurs by rotational processes. The strong decrease of the Rayleigh constant and the corresponding change in the magnetization process is attributed to increased pinning of domain walls due to the precipitation of crystalline Fe-B compounds.  相似文献   

17.
We present the experimental results of the magnetic viscosity, demagnetization curve and recoil loop for isotropic nanocrystalline Pr12Fe82B6 ribbons prepared by melt-spinning. The thermal fluctuation field, activation volume and irreversible demagnetization are discussed. The coercivity mechanism is mainly determined by the inhomogeneous nucleation rather than a simple nucleation of reverse domain.  相似文献   

18.
杨白  沈保根  赵同云  孙继荣 《物理学报》2007,56(6):3527-3532
采用快淬方法制备了纳米晶复合Pr2Fe14B/α-Fe永磁薄带,研究了不同淬火速率对薄带织构和磁性的影响.通过改善快淬工艺,使得薄带中Pr2Fe14B相的晶粒在薄带的自由面形成显著的织构,Pr2Fe14B相晶粒易轴沿垂直于带面方向取向.分析了快淬凝固过程中Pr2Fe14B相的晶粒取向过程和机理,以及晶粒的大小和薄带结构的均匀性对薄带磁性的影响.对自由面有显著取向的薄带,进行酸蚀和打磨减薄处理,去除贴辊面未取向的部分,剩余部分为具有Pr2Fe14B相晶粒取向的各向异性薄带,Pr2Fe14B相取向使薄带的剩磁得到增强,矫顽力也有所提高. 关键词: 快淬 2Fe14B/α-Fe永磁薄带')" href="#">纳米晶复合Pr2Fe14B/α-Fe永磁薄带 织构 磁性能  相似文献   

19.
闫羽  金汉民 《物理学报》2000,49(7):1362-1365
基于单离子晶场模型,提出了计算稀土-Fe(Co)金属间化合物取向多晶样品磁化曲线的方法.用此方法计算了取向Pr2Fe14B和Nd2Fe14 B多晶的高场磁化曲线,计算中使用了拟合化合物单晶磁化曲线得到的交换场与晶场参数.计 算曲线与实验曲线相符合. 关键词: 磁化曲线 晶场 2Fe14B')" href="#">R2Fe14B  相似文献   

20.
We studied the domain wall (DW) dynamics of magnetically bistable amorphous glass-coated Fe74B13Si11C2 microwires. In according to our experimental results magnetic field dependences of DW velocity of studied microwires can be divided into two groups: with uniform or uniformly accelerated DW propagation along the microwire. Strong correlation between the type of the magnetic field dependence of domain wall velocity, v(H), and the distribution of the local nucleation fields has been observed.Moreover, we observed abrupt increasing of DW velocity (jump) on the magnetic field dependences of the domain wall velocity, v(H), for the both types of the v(H) dependences. At the same time usual linear increasing of the domain wall velocity with magnetic field persists below these jumps. It was found that the jump height correlates with the location of nucleation place of the new domain wall. We have measured local nucleation field distribution in all the microwires. From local nucleation field distribution we have obtained the DW nucleation locations and estimated the jump height  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号