共查询到18条相似文献,搜索用时 93 毫秒
1.
在烧结型NdFeB永磁体表面制备了锌铬转化膜,确定了成膜的工艺条件。利用盐水全浸试验评定了膜层的耐腐蚀性能,并与电镀锌、电镀镍进行了比较。利用电化学方法测试了成膜处理前后NdFeB永磁体的稳定电位和自腐蚀电流。利用SEM,XPS,EDS和XRD研究了锌铬膜的微观形态和组成,测试了处理前后NdFeB永磁体的磁性能。结果表明,锌铬膜相对于NdFeB永磁体属于阳极型涂层,有电化学保护作用、机械阻挡作用和钝化作用。NdFeB永磁体经锌铬膜处理后耐蚀性能显著提高,磁性能变化不大。 相似文献
2.
3.
用快淬方法制备了Pr10Fe74-xCo10+xC4B4 (x=0,2,4,6,8) 条带,研究了成分和工艺对条带磁性能的影响.实验发现,当x=2,带速是20 m·s-1时,条带的磁性能最佳,其剩磁Jr=0.94 T,矫顽力μ0 iHc=0.96 T,最大磁能积 (BH)max=127.32 kJ·m-3.通过Henkel-plot分析,发现x=2,带速为20 m·s-1的样品中的晶间交换作用最强,因而能获得最佳的磁性能. 相似文献
4.
工业生产N46与N45H烧结NdFeB永磁体的结构和性能 总被引:11,自引:1,他引:11
通过优化合金成分设计和改进合金铸锭技术、合金粉末制备技术、磁场取向成型技术以及烧结技术,应用全部国产设备与国内通用的工业生产烧结NdFeB永磁的原材料,避免使用镓(Ga)等稀有贵重金属元素,实现了N46与N45H等高性能烧结NdFeB磁体的工业化生产.N46烧结NdFeB磁体的典型磁性能为Br=1.392T(13.92kGs),BH.=1004kA@m-1(12.62kOe),JH.=1085kA@m-1(13.64kOe),Hk=1008kA@m-1(1267kOe),(BH)max=366kJ@m-3(45.9MGOe).N45H烧结NdFeB磁体的典型磁性能为Bx=1.386T(13.86kGs),BH.=1059kA@m-1(13.32kOe),JHc=1418kA@m-1(17.83kOe),Hk=1357kA@m-1(17.06kOe),(BH)max=364kJ@m-3(45.8MG0e).SEM观察和XRD分析结果表明,生产的高性能产品具有良好的取向度和晶粒细小而均匀的显微组织. 相似文献
5.
2:17型Sm(CoFeCuZr):合金由于居里温度高、磁性能优良、温度系数低等优点被认为是最有希望实现高温应用的一类永磁体.为了解决具有低内秉矫顽力温度系数特征的合金内秉矫顽力不高的问题,本文提出了一种在不改变成分的前提下通过改进制备工艺、优化热处理工艺提高合金室温内秉矫顽力的思路.本文在真空非自耗电弧熔炼炉中采用铜模吸铸法制备了不同尺寸的2:17型SmCo合金,确定了优化的热处理工艺,并采用永磁测量仪对其磁性能进行表征.研究发现,在不同尺寸吸铸试样中Φ6试样磁性能比较稳定;热处理后其室温内秉矫顽力达到1300 kA·m-1,比相同成分普通铸锭的880 kA·m-1有显著提高.分析认为,吸铸法制备的合金内秉矫顽力的提高与其晶粒细化、取向度提高以及胞状组织的改善有关. 相似文献
6.
7.
镝氢化物掺杂钕铁硼稀土永磁体的研究 总被引:1,自引:0,他引:1
发现了采用减量化重稀土镝添加高效制备块状超高矫顽力稀土永磁体新型方法。在钕铁硼(Nd-Fe-B)系稀土永磁材料中以DyH3的形式掺入稀土镝(Dy)元素,在不同烧结温度1020,1040,1050,1060,1080℃下进行烧结,制备成一系列DyH3掺杂(PrNd)30Fe69B磁体和未掺杂的(PrNd)30Fe69B磁体。研究剩磁、矫顽力与烧结温度及显微结构之间的关系。结果显示:随着温度的升高,剩磁不断上升;矫顽力在烧结温度1020~1050℃时达到最大。重稀土Dy添加可有效增加Nd-Fe-B磁体的矫顽力。采用扫描电镜和能谱仪研究了不同烧结温度对磁体晶粒尺寸、Dy在晶粒内与晶界处成分分布的影响,发现温度超过1060℃时,晶粒会过度长大,使其矫顽力随之下降。稍低的烧结温度1020~1050℃可以获得Dy分布于晶粒呈"壳"状结构并使得Dy尽量分布于晶界处,获得了制备高矫顽力块体稀土永磁较满意的Dy减量化方法。 相似文献
8.
运用1000 kV超高压电子量微镜和Mossbauer谱仪结合磁测量, 研究了含Nb钕铁硼永磁体的纳米微观结构与矫顽力机制模型.加入Nb, Ga等元素的NdFeB合金(3种化学元素以上组成Nd-Fe-B合金)的矫顽力变化机制用现有的成核硬化模型、界面局域钉扎、均匀钉札都不能解释, 必须有一种新的矫顽力机制模型, 这种新的模型提出的基础是畴壁受激活能作用而移动, 当激活能足够大时, 畴壁可克服阻力而脱出, 从研究热涨落场和矫顽力关系引出研究三元以上NdFeB合金的理论, 即"动态交叉, 组合补益", 要使这种动态交叉能补益必须去寻找Nb, Ga等元素加入量, 文内提出以2%为宜.作者提出"晶粒细化局域钉札"模型可解释三元以上NdFeB的矫顽力变化机制.文内观察到的加Nb后出的Fe2Nb相(a=0.382 nm, c=0.787 nm)存在于Nd2Fe14B主相内, 属Laves相.通过Mossbauer变研究得出 Nb进入e, c晶位, 减少面各向异性, 提高单轴各向异性, Nb主要在晶界, 这是提高矫顽力原因之一.Nb和Ga以适量的添加即复合添加, 可提高矫顽力, 从而改善合金的热稳定性. 相似文献
9.
粘结Sm2TM17高性能稀土永磁体工艺及稳定性的研究 总被引:1,自引:0,他引:1
环氧树脂粘结Sm_2TM_(17)稀土永磁体与烧结磁体不同的是,将熔炼后的铸锭直接固溶处理,时效,粉碎,然后与环氧树脂粘结剂混匀并于磁场下压制成型,加热固化。当采用Fe含量为23%的SmCo_(4.9)Fe_(27)Cu_(0.55)Zro_(0.12)合金,进行适当的热处理及选用一定成型工艺参数时,获得磁体的最佳性能为:Br=8250G,_i H_c=13000Oe,(BH)_m=16MGOe。对磁体稳定性的研究表明:磁体在25~150℃范围内不可逆损失小于4%,25~70℃范围内的平均可逆温度系数α=-0.03%/℃,最高长期使用温度为130℃,以及具有良好的耐酸、碱和盐的化学腐蚀能力。 相似文献
10.
铜、钛复合添加对结NdFeB磁体显微组织和磁性能的影响 总被引:2,自引:0,他引:2
研究了烧结NdFeB磁体晶间合添加Cu和Ti 对磁体显微组织和磁性能的影响,当钛含量小于1.2%时,Cu和Ti晶间复合添加可大幅度提高烧结NdFeB磁体的矫顽力,磁变化不大,矫顽力的提高归因于Cu和Ti在主相晶粒表面富集,细化晶粒,阻断主相晶粒之间的磁交换作用,阻碍反磁化畴的传播,当钛含量大于1.2%时,矫顽力略有下降,乘磁急剧下降,乘磁下降的原因在于出现了大量的条状纯钛相。与晶间单独合金化相比,晶间复合合金化可更有效改善NdFeB磁体显微组织与性能。 相似文献
11.
采用速凝工艺制备了主相合金铸片,由其微观形貌分析可见,富Nd相呈薄层状均匀分布在主相晶界处。XRD分析表明铸带形成了明显的取向织构。使用普通熔炼方法熔炼几种不同成分的辅相合金。将主相合金与辅相合金配比,运用双合金法工艺制备出烧结NdFeB磁体。研究表明Pr替代Nd有利于提高磁体的剩磁。 相似文献
12.
采用晶界添加MgF2制备烧结NdFeB磁体,通过扫描电镜、透射电镜和性能测试,研究了烧结NdFeB磁体的微观组织及其对磁性能、电阻率的提高和耐腐蚀性能的影响.结果表明:添加适量MgF2可实现在磁体剩磁、矫顽力和电阻率提高的基础上,同时提高材料的腐蚀电位,并且在极化曲线的阳极部分相同电位条件下,具有较小的极化电流密度,从而达到改善NdFeB磁体耐腐蚀性能的目的.磁体显微组织研究表明F元素进入晶界相,形成F含量约为30%(原子分数)、以面心立方为基的有序的NdOxFy相,其与磁性能、电阻率的提高和耐腐蚀性能改善有关. 相似文献
13.
14.
15.
16.
研究了烧结Nd-Fe-B磁体表面渗镀Dy2O3对磁体组织结构与磁性能的影响. 表面渗镀Dy2O3后, N40的矫顽力由1017 kA · m-1提高到1146 kA · m-1, 38H的矫顽力由1575 kA · m-1提高到1753 kA · m-1, 而通过传统合金化添加同量Dy, N40和38H的矫顽力分别为1061和1634 kA · m-1. 磁体表面渗镀Dy2O3后热稳定性也大大改善. 组织分析表明, 元素Dy从表面扩散并渗入磁体的内部约20 μm厚, Nd2Fe14B晶粒表层附近Dy含量比晶界中高, 说明Dy2O3中的Dy通过扩散与富Nd相及Nd2Fe14B晶粒表面层的部分Nd发生置换反应, 增强了Nd2Fe14B晶粒表面层的磁晶各向异性. 在此基础上, 提出了高矫顽力高热稳定性渗Dy的烧结Nd-Fe-B磁体中Dy分布的理想模型. 相似文献
17.
双合金法是降低烧结钕铁硼稀土特别是重稀土含量、改善磁体微结构的一种有效方法,其中辅合金的成分及形态起着至关重要的作用。采用粉末冶金的方法,借助SEM和直流磁特性测量系统对辅合金和磁体的微观结构及磁性能进行了分析。结果表明:辅合金粉末尺寸较大时,往往存在大量的中间相能直接进入磁体中形成较大的软磁特性的过渡相,从而损害磁体的磁性能。相反,辅合金粉末尺寸越小,中间相在烧结过程中元素不需要长距离的扩散而达到稳定状态,有利于优化微结构,提高磁体的磁性能。 相似文献
18.
研究了在烧结NdFeB磁体晶间添加Al、Mg、W、Mo等合金元素对显微组织和磁性能的影响。实验结果表明:低熔点合金元素Al、Mg能显著提高NdFeB磁体的矫顽力,略微降低剩磁,对磁体的热稳定性无影响;高熔点合金元素W、Mo在不降低剩磁的情况下亦能提高磁体的矫顽力,但效果不如Al、Mg明显。显微组织分析表明,在添加低熔点和高熔点合金元素的磁体晶间发现了两种不同的新相。矫顽力的提高可归于晶间新相的出现。进一步分析表明,与传统的合金化相比,对NdFeB磁体晶间区域进行微合金化是改进NdFeB磁体组织与性能的一种更为有效的手段。 相似文献