首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Unprecedented magnetic borohydride exchange (mBER), magnetic Wang aldehyde (mWang) and magnetic amine resins were prepared from highly magnetic polymer‐coated cobalt or iron nanoparticles. Microwave irradiation was used to obtain excellent degrees of functionalization (>95 %) and loadings (up to 3.0 mmol g?1) in short reaction times of 15 min or less. A small library of ureas and thioureas was synthesized by the exclusive application of these magnetic resins. As a first step, a reductive amination of aromatic and aliphatic aldehydes was carried out with mBER. The excess of primary amine needed to complete the reaction was subsequently scavenged selectively by mWang. Simple magnetic decantation from the resins resulted in secondary amines in good to excellent yields and purities. The used magnetic resins were efficiently regenerated and reused for the next run. In a second step, the secondary amines were converted to trisubstituted (thio)ureas in excellent yields and purities by stirring with an excess of iso(thio)cyanate, which was scavenged by addition of the magnetic amine resin after completion of the reaction. The whole reaction sequence is carried out without any purification apart from magnetic decantation; moreover, conventional magnetic stirring can be used as opposed to the vortexing required for polystyrene resins.  相似文献   

4.
稀土掺杂上转换纳米粒子(RED-UCNPs)作为一种新型高效的上转换发光纳米材料,具有反斯托克斯位移大,发射光谱窄、发光寿命长、材料毒性低等优点,已成为荧光标记、光动力学治疗、生物成像和构建生物传感器等领域的研究热点。然而,目前广泛使用的溶剂热法合成的RED-UCNPs生物相容性和亲水性差,而且不具备与生物分子之间相偶联的活性基团,因此对RED-UCNPs进行表面功能化修饰就显得格外重要。本文重点综述了RED-UCNPs的表面功能化修饰的类型及其应用现状,为RED-UCNPs的进一步研究开发和应用提供思路和参考依据。  相似文献   

5.
Abstract

Heterocyclic scaffolds are important components in the structure of many drugs and natural products. They are well-known compounds because of their broad spectrum of pharmaceutical and biological activities. In this paper, we provide an overview of the utilization of copper complexes immobilized on magnetic nanoparticles as economical and efficient catalytic systems for the synthesis of heterocyclic molecules.  相似文献   

6.
This paper describes a rapid, simple and one-step method for preparing silica coated gold (Au@SiO2) nanoparticles with fine tunable silica shell thickness and surface functionalization of the prepared particles with different groups. Monodispersed Au nanoparticles with a mean particle size of 16 nm were prepared by citrate reduction method. Silica coating was carried out by mixing the as prepared Au solution, tetraethoxysilane (TEOS) and ammonia followed by microwave (MW) irradiation. Although there are several ways of coating Au nanoparticles with silica in the literature, each of these needs pre-coating step as well as long reaction duration. The present method is especially useful for giving the opportunity to cover the colloidal Au particles with uniform silica shell within very short time and forgoes the use of a silane coupling agent or pre-coating step before silica coating. Au@SiO2 nanoparticles with wide range of silica shell thickness (5-105 nm) were prepared within 5 min of MW irradiation by changing the concentration of TEOS only. The size uniformity and monodispersity were found to be better compared to the particles prepared by conventional methods, which were confirmed by dynamic light scattering and transmission electron microscopic techniques. The prepared Au@SiO2 nanoparticles were further functionalized with amino, carboxylate, alkyl groups to facilitate the rapid translation of the nanoparticles to a wide range of end applications. The functional groups were identified by XPS, and zeta potential measurements.  相似文献   

7.
In this work, we report the size tunable synthesis of water-dispersed gold nanoparticles by using octadecylamine (ODA) as the reducing agent, that electrostatically complexes with the chloroaurate ions, reduces them, and subsequently caps the gold nanoparticles. Amine-capped gold nanoparticles, thus formed, were subsequently coordinated with a secondary monolayer of an anionic surfactant, sodium bis(2-ethylhexyl)-sulfosuccinate (AOT) which helps in providing sufficient hydrophilicity to the gold nanoparticles. Functionalized gold nanoparticles were characterized by UV-vis, IR spectrophotometric, dynamic light scattering, zeta-potential and transmission electron microscopic techniques, which demonstrated high stability of gold nanoparticles in aqueous media, indicating stabilization via bilayers of ODA and AOT. The gold nanoparticles were further conjugated with a protein (bovine serum albumin) and the interaction was investigated by circular dichroism studies as well as by measuring the fluorescence quenching of the tryptophan residues of protein molecules after the binding of nanoparticles to specific sites of the protein. The binding constant and the stoichiometry values indicated that the particles with larger core size are less site-specific but show higher binding affinity with protein molecules. The use of a bio-compatible synthetic process and the stabilization of the gold nanoparticles by ODA and AOT are interesting from the point of view of making bioprobes for life science applications.  相似文献   

8.
This review focuses on the synthesis, protection, functionalization, characterization and with some applications of magnetic nanoparticles (MNPs). The review begins with an overview on magnetic property and single domain particles. The synthetic strategies developed for the generation of MNPs, with a focus on particle formation mechanism and recent modifications made on the synthesis of monodisperse samples of relatively large quantities are also discussed. Then, different methodologies for the protection and functionalization of the synthesized MNPs, together with the characterization techniques are explained. Finally, some of the recent industrial, biological, environmental and analyticals application of MNPs are briefly reviewed, and some future trends and perspectives in these research areas will be outlined.  相似文献   

9.
10.
This report describes the synthesis of magnetic NiFe@Au (i.e., NiFe core with Au shell) nanoparticles as functional spectroscopic probes. Both of the magnetic NiFe nanoparticles and its composite NiFe@Au particles were synthesized in aqueous solution. It is more analogous with the biological organism environment. The composite nanoparticles were dispersible in aqueous solution and could be directed by a magnetic field. Such NiFe@Au nanoparticles have been shown to function as magnetic and spectroscopic nanoprobes for surface enhanced Raman scattering (SERS) detection of molecules attached to the surface of the nanoparticles. It shows more potential functional SERS nanoprobes for biomolecular separation and detection.  相似文献   

11.
This review summarizes the current synthesis of magnetic nanoparticles (MNPs) preparation, functionalization and stabilization methods. And furthermore it highlights some actual case analyses of these MNPs for disease therapy, drug delivery, hyperthermia, bioseparation and bioimaging applications.  相似文献   

12.
Metal-organic frameworks (MOFs) have an unprecedented ability to store gas molecules, however energy efficient regeneration remains challenging. Use of magnetic induction to aid this shows promise, but economical synthesis of the requisite composites is unresolved. Continuous flow chemistry has been reported as a rapid and reliable method of MOF synthesis, delivering step-change improvements in space time yields (STY). Here the scalable production of nanomaterials suitable for regeneration by magnetic induction is demonstrated. The zirconium MOF composite, MgFe2O4@UiO-66-NH2 is prepared using continuous flow chemistry resulting in a material of comparable performance to its batch counterpart. Upscaling using flow chemistry gave STY >25 times that of batch synthesis. Magnetic induced regeneration using this mass produced MFC for carbon capture is then demonstrated.  相似文献   

13.
High purity NaGe was directly prepared by a low-temperature reaction of NaH and Ge. The product was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy. This material is a useful starting reagent for the preparation of Ge nanoparticles. Hydrogen-terminated germanium (Ge) nanoparticles were prepared by reaction of NaGe with NH4Br. These Ge nanoparticles could be prepared as amorphous or crystalline nanoparticles in quantitative yields and with a narrow size distribution. The nanoparticles were functionalized via thermally initiated hydrogermylation with 1-eicosyne, CH3(CH2)17C≡CH to produce alkyl-terminated Ge nanoparticles. The modified Ge nanoparticles were characterized by powder XRD, transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and Raman spectroscopy, and photoluminescence (PL) spectroscopy. The alkyl-functionalized Ge nanoparticles can be expected to have promising applications in many technological and biological areas.  相似文献   

14.
A new, facile and generally applicable synthesis of functionalized gold nanoparticles is presented. It is based on the surfactant-free generation of weakly stabilized nanoparticles by the reduction of HAuCl4 with sodium naphthalenide in diglyme. These nanoparticles were found to lack long-term stability. However, stabilization in both unpolar and polar solvents could straightforwardly be achieved by subsequent addition of various capping ligands. The resulting ligand-capped gold nanoparticles were investigated by TEM microscopy, UV-vis, and FT-IR spectroscopy. Particle core size can be tuned by the amount of reduction agent. The strict separation of the reduction step and the functionalization step in this one-pot synthesis offers an easy and fast access to highly functionalized gold nanoparticles.  相似文献   

15.
以磺基琥珀酸二辛酯钠盐(AOT)为表面活性剂,采用反胶束法合成了憎水性CoFe/Au纳米粒子, 利用配体交换、水洗等去除AOT并使纳米粒子分级.采用紫外-可见光谱(UV-Vis)、透射电镜(TEM)、X射线衍射(XRD)、X射线电子能量散射(EDX)及等离子发射光谱 (ICP)等对产物进行了表征,通过超导量子干涉仪(SQIUD)研究了纳米粒子的磁性质.结果表明,反胶束法合成的CoFe/Au三金属纳米粒子具有较好的单分散性和稳定性,平均粒径约为4 nm.当外磁场强度为1.5×104 A/m时,阻塞温度Tb为65 K,温度高于Tb时纳米粒子显示出超顺磁性,低于Tb时呈铁磁性,在5 K时其矫顽力(Hc)达4.67×104 A/m.  相似文献   

16.
A new magnetic catalyst was prepared through the reaction of silanol groups, on the surface of silica‐coated Fe3O4 magnetic nanoparticles, with (3‐chloropropyl)triethoxysilane followed by hexamethylenetetramine and chlorosulfonic acid. The obtained magnetic catalyst was characterized using thermogravimetric analysis, vibrating sample magnetometry, scanning electron microscopy and energy‐dispersive X‐ray analysis. Its catalytic activity was investigated in the synthesis of pyranopyrazole compounds, and the results were excellent regarding high yield of the products and short reaction time.  相似文献   

17.
SiO(2)/Zn(2)SiO(4):Mn(2+) core-shell nanoparticles with mean diameters in the range of 55-220 nm were prepared by a modified Pechini sol-gel method followed by lyophilization and annealing at temperatures of 800-1100°C. The as-synthesized nanoparticles were characterized by transmission electron microscopy, X-ray diffraction analysis, and photoluminescence spectroscopy. The results demonstrate that the crystal structure of the shell and the optical properties can be tuned by the annealing temperature and a variation of the concentration of doping ions. Under UV excitation, the samples emit green luminescence with its maximum at 525 nm, typical for the Mn(2+) ions in α-Zn(2)SiO(4). The resulting nanoparticles were successfully modified with amine and carboxyl functions with respect to a later attachment of biological moieties.  相似文献   

18.
19.
A kinetics‐based method is proposed to quantitatively characterize the collective magnetization of colloidal magnetic nanoparticles. The method is based on the relationship between the magnetic force on a colloidal droplet and the movement of the droplet under a gradient magnetic field. Through computational analysis of the kinetic parameters, such as displacement, velocity, and acceleration, the magnetization of colloidal magnetic nanoparticles can be calculated. In our experiments, the values measured by using our method exhibited a better linear correlation with magnetothermal heating, than those obtained by using a vibrating sample magnetometer and magnetic balance. This finding indicates that this method may be more suitable to evaluate the collective magnetism of colloidal magnetic nanoparticles under low magnetic fields than the commonly used methods. Accurate evaluation of the magnetic properties of colloidal nanoparticles is of great importance for the standardization of magnetic nanomaterials and for their practical application in biomedicine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号