首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rusi  C.-K. Sim  S. R. Majid 《Ionics》2017,23(5):1219-1227
Polyaniline (PANI) nanowire electrode was successfully prepared using electrodeposition method. The morphology, thickness, and electrochemical performance of PANI electrode can be controlled by varying the deposition scan rates. Lower deposition scan rate results in compact and aggregates of PANI nanowire morphology. The uniform nanowire of PANI was obtained at the applied scan rate of 100 mV s?1, and it was used as symmetric electrode coupled with H2SO4/polyvinyl alcohol (PVA) gel electrolyte. The different concentrations of H2SO4 acid in polymer electrolyte have influenced the electrochemical performance as well. The optimum specific capacitance and energy density of P100 PANI electrode in 3 M H2SO4/PVA gel polymer electrolyte was 377 F g?1 and 95.4 Wh kg?1 at the scan rate of 1 mV s?1. The good stability of the electrode in this system is applicable to many wearable electronics applications.  相似文献   

2.
We report the synthesis of Li2CoSiO4 by the sol-gel method and the preparation of a composite electrode by incorporating functionalized multi-walled carbon nanotubes (fn. MWCNTs) as conductive additive. XRD pattern of the composite confirms the structural stability of Li2CoSiO4 even after the addition of fn. MWCNTs. SEM images of the composite reveal the presence of conductive bridges formed by MWCNTs between the submicron-sized particles of Li2CoSiO4. The cyclic voltammograms of the composite cathode show redox peaks with higher current density than pure Li2CoSiO4 and the current density increases with increase in sweep rate. The diffusion coefficient of lithium has been improved by the addition of fn. MWCNTs from 1 × 10?14 to 8 × 10?14 cm2/s as calculated using Randles-Sevcik equation. The charge-discharge cycling performance of both pure Li2CoSiO4 and composite cathode has been discussed.  相似文献   

3.
Indium oxide-multi-walled carbon nanotubes (In2O3-MWCNTs) were prepared by sol-gel method for DSSCs. The synthesis of indium oxide (In2O3) was carried out by dissolving indium chloride (InCl3) in a solvent of 2-methoxyethanol. Different annealing temperatures of 400, 450, 500, 550, and 600 °C were proposed in this study. The changes in the structural properties were analyzed by means of X-ray diffraction (XRD) and atomic force microscopy (AFM) analysis. The XRD spectrum estimated the average crystallite sizes of 3 nm for each sample. AFM results indicated very rough surface area of the films where it increased linearly from 1.8 to 11 nm as the annealing temperature increases. The In2O3-MWCNTs-based DSSC exhibited good photovoltaic performance with power conversion efficiency (η), photocurrent density (J sc ), open circuit voltage (V oc ), and fill factor (FF) of 1.13 %, 5.5 mA/cm2, 0.53 V, and 0.42, respectively. Even though the film annealed at 450 °C exhibited low τ eff, it achieved the greatest D eff of 29.67 cm2 s?1 which provides an efficient pathway for the photogenerated electrons with minimum electron recombination loss that increased the J sc and V oc in the DSSC. The obtained structural and electron transport analysis was proposed as a suitable benchmark for In2O3-MWCNTs-based dye-sensitized solar cell (DSSCs) application. Hence, this study suggests that the optimum temperature for In2O3-MWCNTs is at annealing temperature of 450 °C prepared via sol-gel method.  相似文献   

4.
The structure and morphology of sodium vanadium phosphate (Na3V2(PO4)3) play a vital role in enhancing the electrochemical performance of sodium-ion batteries due to the inherent poor electronic conductivity of the phosphate framework. In order to improve this drawback, a new chrysanthemum-structured Na3V2(PO4)3/C material has been successfully assembled with multi-hierarchical nanosheets via a hydrothermal method. Continuous scattering nanosheets in chrysanthemum petals are beneficial in reducing energy consumption during the process of sodium ion diffusion, on which the carbon-coated surface can significantly increase overall conductivity. The as-prepared sample exhibits outstanding electrochemical performance due to its unique structure. It rendered a high initial specific capacity of 117.4?mAh?g?1 at a current density of 0.05 C. Further increasing the current density to 10 C, the initial specific capacity still achieves 101.3?mAh?g?1 and remains at 87.5?mAh?g?1 after 1000 cycles. In addition, a symmetrical sodium-ion full battery using the chrysanthemum-structured Na3V2(PO4)3/C materials as both the cathode and anode has been successfully fabricated, delivering the capacity of 62?mAh?g?1 at 1?C and achieving the coulombic efficiency at an average of 96.4% within 100 cycles. These results indicate that the new chrysanthemum-structured Na3V2(PO4)3/C can provide a new idea for the development of high-performance sodium-ion batteries.  相似文献   

5.
Carbon-coated ZnFe2O4 spheres with sizes of ~110–180 nm anchored on graphene nanosheets (ZF@C/G) are successfully prepared and applied as anode materials for lithium ion batteries (LIBs). The obtained ZF@C/G presents an initial discharge capacity of 1235 mAh g?1 and maintains a reversible capacity of 775 mAh g?1 after 150 cycles at a current density of 500 mA g?1. After being tested at 2 A g?1 for 700 cycles, the capacity still retains 617 mAh g?1. The enhanced electrochemical performances can be attributed to the synergetic role of graphene and uniform carbon coating (~3–6 nm), which can inhibit the volume expansion, prevent the pulverization/aggregation upon prolonged cycling, and facilitate the electron transfer between carbon-coated ZnFe2O4 spheres. The electrochemical results suggest that the synthesized ZF@C/G nanostructures are promising electrode materials for high-performance lithium ion batteries.
Graphical abstract ?
  相似文献   

6.
La0.5Sr0.5CoO3-yttria-stabilized zirconia (LSCO-YSZ) composite cathode for solid oxide fuel cell (SOFC) has been fabricated by wet impregnation method. Nitrate precursors of La, Sr, and Co have been impregnated into the pre-sintered porous YSZ matrix, which is converted into LSCO phase after calcination at 850 °C in the presence of glycine as confirmed from X-ray diffraction. LSCO of 5, 7, and 10 wt% impregnated porous YSZ have been electrochemically characterized using 2-probe AC conductivity method. Maximum ionic conductivity of 0.27 S/cm at 800 °C and activation energy of 0.15 eV between 600 and 800 °C have been observed for 10 wt% LSCO-YSZ cathode. Area-specific resistance of 1.01 Ω cm2 at 800 °C is estimated for the electrolyte-supported half-cell (10 wt% LSCO-YSZ/YSZ). After testing the LSCO-YSZ cathode matrix, the electrolyte-supported full cell (10 wt% LSCO-YSZ/YSZ/NiO-YSZ) has been tested and produced maximum power density 51.12 mW/cm2 (109.38 mA/cm2) at 800 °C. The electrolyte-supported full cell exhibited 6 Ω cm2 electrode polarization at 800 °C in H2, which is in higher side leading to low performance. LSCO-YSZ/YSZ/NiO-YSZ SOFC found to give stable performance up to 2 h and scanning electron microscopy analysis has been carried out before and after cell testing to assess the morphological changes.  相似文献   

7.
Pure LiMn2O4 samples with high crystallinity (LMO-1# and LMO-2#) were successfully synthesized by a facile hydrothermal method using δ-MnO2 nanoflowers and α-MnO2 nanowires as the precursors. The as-prepared samples were analyzed by XRD, SEM, and Brunauer-Emmett-Teller (BET), and their capacitive properties were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge test. Two LiMn2O4 samples showed good capacitive behavior in aqueous hybrid supercapacitors. AC//LMO-1# and AC//LMO-2# delivered the initial specific capacitance of 45.4 and 40.7 F g?1 in 1 M Li2SO4 electrolyte at a current density of 200 mA g?1 in the potential range of 0~1.5 V, respectively. After 1000 cycles, the capacitance retention was 97.6% for AC//LMO-1# and 93.7% for AC//LMO-2#. Obviously, LMO-1# from δ-MnO2 nanoflowers exhibited higher specific capacitance and better cycling performance than LMO-2#, so LMO-1# was more suitable as the positive electrode material in hybrid supercapacitors.  相似文献   

8.
Ni sintering at high temperature (~ 800 °C) operation drastically degrades the performance of Ni-yttria-stabilized zirconia (YSZ) anode in solid oxide fuel cell (SOFC). Mixed ionic and electronic conductive oxides such as CeO2 and Nb2O5 enhance the dispersion of Ni, CeO2 enhances the redox behavior and promotes charge transfer reactions, and Nb2O5 increases the triple phase boundary. In the present work, anode-supported SOFC is fabricated and tested in H2 fuel at 800 °C. YSZ and lanthanum strontium manganite (LSM)-YSZ are used as the electrolyte and composite cathode with NiO-YSZ, CeO2-NiO-YSZ, and Nb2O5-NiO-YSZ as an anode. The peak power density obtained for the cell with 10% CeO2–30% NiO-YSZ anode at the 5 and 25 h of operation is 330 and 290 mW cm?2 which is higher than that for 40% NiO-YSZ anode (275 mW cm?2 at 5 h). The peak power density obtained for the cell with 10% Nb2O5–30% NiO-YSZ anode at the 5 and 25 h of operation is 301 and 285 mW cm?2 which is higher than that for 40% NiO-YSZ anode (275 mW cm?2 at 5 h). Physical characterization has been carried to study morphology, elemental analysis, particle size, and phase formation of the fabricated anode before and after cell operation to correlate the cell performance.  相似文献   

9.
The influence of a high-power ion beam on polycrystalline oxides (V2O5, MoO3, and WO3) is investigated. Oxide irradiation with ion beams with current densities of greater than ~30 A/cm2 is established to initiate changes in the color of irradiated layers and lead to surface-layer particle melting. It is demonstrated that a distinctive feature of the interaction between a high-power ion beam and V2O5 is the formation of surface nanosheets and nanowires whose characteristic cross-sectional size and thickness are ~1 μm and up to ~40 nm, respectively. The nanosheets are generated near emerging surface cracks if the beam current density is ~100 A/cm2. Possible mechanisms of surface nanostructures formation under the action of pulsed ion beams are discussed.  相似文献   

10.
Vertically aligned γ-AlOOH nanosheets (NSs) have been successfully fabricated on flexible Al foils via a solvothermal route without morphology-directing agents. Three different reaction temperature (25, 80, and 120 ?C) and time (30 min, 45 min, and 24 h) are discussed for the growth period, which efficiently tune the density and size of the γ-AlOOH NSs. Meanwhile, the growth speed of the nanosheets confirms that dominant growth stage is seen in the initial 45 min. Furthermore, the interlayer of the γ-AlOOH NSs displays an average height of 140 nm and superhydrophilicity. By dynamic adsorption, the assynthesized γ-AlOOH NSs exhibit an outstanding NH3 adsorption capacity of up to 146 mg/g and stably excellent regeneration for 5 cycles. The mechanism of NH3 adsorption on the in-plane of the γ-AlOOH NSs is explained by the Lewis acid/base theory. The H-bond interactions among the NH3 molecules and the edge groups (-OH) further improve the capture ability of the nanosheets.  相似文献   

11.
A simple sucrose-assisted combustion and subsequent high-temperature calcination route have been employed to prepare hierarchical porous ZnMn2O4 nanostructure. When used as an electrode for supercapacitor, the ZnMn2O4 electrode displays a high specific capacitance of 411.75 F g?1 at a current density of 1 A g?1, remarkable capacitance retention rate of 64.28 % at current density of 32 A g?1 compared with 1 A g?1, as well as excellent cycle stability (reversible capacity retention of 88.32 % after 4000 cycles). The outstanding electrochemical performances are mainly attributed to its hierarchical porous architecture, which provides large reaction surface area, fast ion and electron transfer, and good structure stability. All these impressive results demonstrate that ZnMn2O4 shows promise for its application in supercapacitors.  相似文献   

12.
A novel approach of double hydroxide-mediated synthesis of nickel cobaltite (NiCo2O4) electro-active material by the hydrothermal method is reported. The obtained NiCo2O4 electro-active material displays the spinel cubic phase and hexagonal-like morphology. Thermogravimetry analysis confirms the thermal stability of the electrode material. The functional groups and phase formation of NiCo2O4 have been confirmed by FT-IR and Raman spectral analysis. The modified NiCo2O4 electrode exhibits the highest specific capacitance of 767.5 F g?1 at a current density of 0.5 A g?1 in 3 M KOH electrolyte and excellent cyclic stability (94 % capacitance retention after 1000 cycles at a high current density of 5 A g?1). The excellent electrochemical performance of the electrode is attributed to the hexagonal-like morphology, which contributes to the rich surface electro-active sites and easy transport pathway for the ions during the electrochemical reaction. The attractive Faradic behavior of NiCo2O4 electrode has been ascribed to the redox contribution of Ni2+/Ni3+ and Co2+/Co3+ metal species in the alkaline medium. The symmetrical two-electrode cell has been fabricated using the NiCo2O4 electro-active material with excellent electrochemical properties for supercapacitor applications.  相似文献   

13.
Based on the dielectric continuum phonon model, uniaxialmodel and force balance equation the mobility of two dimensional electrongas in wurtzite AlxGa1-xN/GaN/AlxGa1-xN quantum wells isdiscussed theoretically within the temperature range dominated by opticalphonons. The dependences of the electron mobility on temperature, Al molarfraction and electron sheet density are presented including hydrostaticpressure effect. The built-in electric field is also taken into account. Itis found that under normal pressure the main contribution to the mobility isfrom the scattering of interface optical phonons in narrow (for well widthd < 12 Å) and wide (for d > 117 Å and d > 65 Å for finitelythick barriers and infinitely thick ones, respectively) wells, whereas thatis from the scattering of confined optical phonons in a well with anintermediate width. It is shown that the electron mobility decreases withincreasing Al molar fraction and temperature, whereas increases obviouslywith increasing electron sheet density. The theoretical calculated electronmobility is 978 cm2/V?s which is higher than an available experimentaldata 875 cm2/V?s when x equals to 0.58 at room temperature. Theresults under hydrostatic pressure considering the modification of strainindicate that the mobility increases slightly as hydrostatic pressureincreases from 0 to 10 GPa.  相似文献   

14.
In this work, the photocatalyst composed of ultrathin MoS2 nanosheets onto the surface of cubic CdS nanoparticles with an average diameter of 7~10 nm has been successfully fabricated through a facile and mild photodeposition route. The ultrathin MoS2 nanosheets as a cocatalyst were demonstrated to greatly boost photocatalytic H2 evolution over cubic CdS upon visible light irradiation. It was clearly revealed that both the cubic CdS substrate and structure of ultrathin MoS2 nanosheets play critical roles in the observed efficient H2 evolution. The cubic CdS offers a strong adherence for ultrathin MoS2 nanosheets to form a well contact interface, across which the photogenerated charge transfer and charge separation are achieved. The ultrathin MoS2 nanosheets introduce a high density of unsaturated active S atoms for H2 evolution.  相似文献   

15.
Al-doped ZnO (AZO) was sputtered on the surface of LiNi1/3Co1/3Mn1/3O2 (NCM) thin film electrode via radio frequency magnetron sputtering, which was demonstrated to be a useful approach to enhance electrochemical performance of thin film electrode. The structure and morphology of the prepared electrodes were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, and transmission electron microscopy techniques. The results clearly demonstrated that NCM thin film showed a strong (104) preferred orientation and AZO was uniformly covered on the surface of NCM electrode. After 200 cycles at 50 μA μm?1 cm?2, the NCM/AZO-60s electrode delivered highest discharge capacity (78.1 μAh μm?1 cm?2) compared with that of the NCM/AZO-120s electrode (62.4 μAh μm?1 cm?2) and the bare NCM electrode (22.3 μAh μm?1 cm?2). In addition, the rate capability of the NCM/AZO-60s electrode was superior to the NCM/AZO-120s and bare NCM electrodes. The improved electrochemical performance can be ascribed to the appropriate thickness of the AZO coating layer, which not only acted as HF scavenger to keep a stable electrode/electrolyte interface but also reduced the charge transfer resistance during cycling.  相似文献   

16.
In this work, Fe2TiO5 nanoparticles were used for improving the proton conductivity, and water and acid uptake of polybenzimidazole (PBI)-based proton exchange membranes. The nanocomposite membranes have been prepared using different amounts of Fe2TiO5 nanoparticles and dispersed into a PBI membrane with the solution-casting method. The prepared membranes were then physico-chemically and electrochemically characterized for use as electrolytes in high-temperature PEMFCs. The PBI/Fe2TiO5 membranes (PFT) showed a higher acid uptake and proton conductivity compared with the pure PBI membranes. The highest acid uptake (156 %) and proton conductivity (78 mS/cm at 180 °C) were observed for the PBI nanocomposite membranes containing 4 wt% of Fe2TiO5 nanoparticles (PFT4). The PFT4 composite membrane showed 380 mW/cm2 power density and 760 mA/cm2 current density in 0.5 V at 180 °C at dry condition. The above results indicated that the PFT4 nanocomposite membranes could be utilized as proton exchange membranes for high-temperature fuel cells.  相似文献   

17.
In order to establish the mechanism and to determine the parameters of lithium transport in electrodes based on lithium-vanadium phosphate (Li3V2(PO4)3), the kinetic model was designed and experimentally tested for joint analysis of electrochemical impedance (EIS), cyclic voltammetry (CV), pulse chronoamperometry (PITT), and chronopotentiometry (GITT) data. It comprises the stages of sequential lithium-ion transfer in the surface layer and the bulk of electrode material’s particles, including accumulation of lithium in the bulk. Transfer processes at both sites are of diffusion nature and differ significantly, both by temporal (characteristic time, τ) and kinetic (diffusion coefficient, D) constants. PITT data analysis provided the following D values for the predominantly lithiated and delithiated forms of the intercalation material: 10?9 and 3 × 10?10 cm2 s?1, respectively, for transfer in the bulk and 10?12 cm2 s?1 for transfer in the thin surface layer of material’s particles. D values extracted from GITT data are in consistency with those obtained from PITT: 3.5–5.8 × 10?10 and 0.9–5 × 10?10 cm2 s?1 (for the current and currentless mode, respectively). The D values obtained from EIS data were 5.5 × 10?10 cm2 s?1 for lithiated (at a potential of 3.5 V) and 2.3 × 10?9 cm2 s?1 for delithiated (at a potential 4.1 V) forms. CV evaluation gave close results: 3 × 10?11 cm2 s?1 for anodic and 3.4 × 10?11 cm2 s?1 for cathodic processes, respectively. The use of complex experimental measurement procedure for combined application of the EIS, PITT, and GITT methods allowed to obtain thermodynamic E,c dependence of Li3V2(PO4)3 electrode, which is not affected by polarization and heterogeneity of lithium concentration in the intercalate.  相似文献   

18.
Nanocrystalline Li2TiO3 was successfully synthesized using solid-state reaction method. The microstructural and electrochemical properties of the prepared material are systematically characterized. The X-ray diffraction pattern of the prepared material exhibits predominant (002) orientation related to the monoclinic structure with C2/c space group. HRTEM images and SAED analysis reveal the well-developed nanostructured particles with average size of ~40 nm. The electrochemical properties of the prepared sample are carried out using cyclic voltammetry (CV) and chronopotentiometry (CP) using Pt//Li2TiO3 cell in 1 mol L?1 Li2SO4 aqueous electrolyte. The Li2TiO3 electrode exhibits a specific discharge capacity of 122 mAh g?1; it can be used as anode in Li battery within the potential window 0.0–1.0 V, while investigated as a supercapacitor electrode, it delivers a specific capacitance of 317 F g?1 at a current density of 1 mA g?1 within the potential range ?0.4 to +0.4 V. The demonstration of both anodic and supercapacitor behavior concludes that the nanocrystalline Li2TiO3 is a suitable electrode material for supercapattery application.  相似文献   

19.
By employment of nano-sized pre-prepared Mn3O4 as precursor, LiMn2O4 particles have been successfully prepared by facile solid state method and sol-gel route, respectively. And the reaction mechanism of the used precursors of Mn3O4 is studied. The structure, morphology, and element distribution of the as-synthesized LiMn2O4 samples are characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Compared with LiMn2O4 synthesized by facile solid state method (SS-LMO), LiMn2O4 synthesized by modified sol-gel route (SG-LMO) possesses higher crystallinity, smaller average particle size (~175 nm), higher lithium chemical diffusion coefficient (1.17 × 10?11 cm2 s?1), as well as superior electrochemical performance. For example, the cell based on SG-LMO can deliver a capacity of 85.5 mAh g?1 at a high rate of 5 °C, and manifests 88.3% capacity retention after 100 cycles at 0.5 °C when cycling at 45 °C. The good electrochemical performance of the cell based on SG-LMO is ascribed mainly to its small particle size, high degree of dispersion, and uniform element distribution in bulk material. In addition, the lower polarization potential accelerates Li+ ion migration, and the lower atom location confused degree maintains integrity of crystal structure, both of which can effectively improve the rate capability and cyclability of SG-LMO.  相似文献   

20.
In this work, the commercial carbon paper was firstly peeled in K2CO3 solution and then was further treated in a KNO3 solution to form functional exfoliation graphene (FEG) on the commercial carbon paper. The FEG/carbon paper was characterized by Raman spectra and scanning electron microscopy, confirming that some typical layered fold graphenes were successfully peeled off and stood on the carbon paper matrix. Then, Fe3O4 nanoparticles (NPs) were grown on the surface of FEG/carbon paper and the as-prepared Fe3O4 NPs/FEG/carbon paper was directly used as supercapacitor electrode. The specific capacitance of Fe3O4 NPs/FEG/carbon paper was about 316.07 F g?1 at a current density of 1 A g?1. Furthermore, the FEG/carbon papers were also functionalized by benzene carboxylic acid to form FFEG/carbon papers, and then the Fe3O4 NPs were grown on the surface of FFEG/carbon paper. The specific capacitance of Fe3O4 NPs/FFEG/carbon paper was 470 F g?1 at a current density of 1 A g?1, superior to some previous reported results. This work might provide a new strategy to prepare various nanostructures on FFEG/carbon papers for future applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号