首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of the K2[Fe3Q(CO)9] clusters (Q = Se or Te) with Rh2(CO)4Cl2 under mild conditions is accompanied by complicated fragmentation of cores of the starting clusters to form large heteronuclear cluster anions. The [PPh4][Fe4Rh3Se2(CO)16] and [PPh4]2[Fe3Rh4Te2(CO)15] compounds were isolated by treatment of the reaction products with tetraphenylphosphonium bromide. The structures of the products were established by X-ray diffraction. In both compounds, the core of the heteronuclear cluster consists of two octahedra fused via a common Rh3 face. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 775–778, May, 2006.  相似文献   

2.
Ethanolic solutions of RhIII chloride exposed to γ-radiation under CO atmosphere are shown to be totally reduced into RhI complexes (Rh2(CO)4Cl2 and Rh(CO)2Cl-2) within a few hours with a radiolytic reduction yield of about 6.0 elementary reductions/100 eV (6.2·10-7 mol·J-1). The chloride ions freed in the medium inhibit further reduction through Rh(CO)2Cl-2 formation. On addition of copper metal under the same conditions, RhIII is transformed into Rh6(CO)16 with a conversion yield 50%. This cluster is formed via Rh2(CO)4Cl2 although Rh(CO)2Cl-2 is also present under these conditions. Rh6(CO)16 cluster is also formed under radiolysis by direct reduction of Rh2(CO)4Cl2, but metallic rhodium and other reduced products are obtained at the same time.  相似文献   

3.
Rh6(CO)10[(-)DIOP]3 has been isolated after ligand exchange between Rh6(CO)16 and DIOP. The molecular cluster is an efficient catalyst for asymmetric reduction of various prochiral olefins; optical yields up to 47% have been achieved; the results are compared with those obtained with mononuclear rhodium (I) complexes.  相似文献   

4.
Two new disubstituted derivatives of the clusters Rh6(CO)16 and H4Ru4(CO)12 with the heterobidentate ligand [Ph2P(2-CH3SC6H4)] were synthesized. Structures of these compounds were completely characterized both in solid phase and solution. The H4Ru4(CO)10[k2(P,S)-Ph2P(2-CH3SC6H4)] cluster is an example of a structure, in which a chelating coordination of a heterobidentate ligand results in the occurrence of a center of asymmetry associated with the substituted metal atom. This type of polynuclear complexes is of interest for obtaining essentially new catalysts for asymmetric synthesis on the basis of cluster compounds.  相似文献   

5.
The reaction of Rh4(CO)12 with Pd(PBu t 3)2 yielded the high nuclearity bimetallic hexarhodium-tripalladium cluster complex Rh6(CO)16[Pd(PBu t 3)]3, 10, in 11% yield. Compound 10 was converted to the hexarhodium-tetrapalladium cluster Rh6(CO)16[Pd(PBu t 3)]4, 11, in 62% yield by reaction with an additional quantity of Pd(PBu t 3)2. Both compounds were characterized crystallographically. Structurally, both compounds consist of an octahedral cluster of six rhodium atoms with sixteen carbonyl ligands analogous to that of the known compound Rh6(CO)16. Compound 10 also contains three Pd(PBu t 3) groups that bridge three Rh–Rh bonds along edges of the Rh6 octahedron to give an overall D3 symmetry to the Rh6Pd3 cluster. Compound 11 contains four edge bridging Pd(PBu t 3) groups distributed across the Rh6 octahedron to give an overall D2d symmetry to the Rh6Pd4 cluster. Each Rh–Pd connection in both compounds contains a bridging carbonyl ligand that helps to stabilize the bond between the Pd(PBu t 3) groups and the Rh atoms. Both compounds can be regarded as Pd(PBu t 3) adducts of Rh6(CO)16.  相似文献   

6.
Synthesis and Crystal Structure of (C5H5)Mo(CO)3(AuPPh3) and [(C5H5)Mo(CO)2(AuPPh3)4]PF6 CpMo(CO)3(AuPPh3) is obtained by the reaction of Li[CpMo(CO)3] with Ph3PAuCl at ?95°C in CH2Cl2. It crystallizes in the monoclinic space group C2/c with a = 2625.1(7), b = 883.2(1), c = 2328.4(7) pm, β = 116.39(1)° und Z = 8. In the complex the AuPPh3 group is coordinated to the CpMo(CO)3 fragment with a Au? Mo bond of 271,0 pm. The Mo atom thus achieves a square pyramidal coordination with the center of the Cp ring in apical position. CpMo(CO)3(AuPPh3) reacts under uv irradiation with an excess of Ph3PAuN3 to afford the cluster cation [CpMo(CO)2(AuPPh3)4]+. It crystallizes as [CpMo(CO)2(AuPPh3)4]PF6 · 2 CH2Cl2 in the orthorhombic space group P212121 with a = 1553.9(1), b = 1793.8(2), c = 2809.8(7) pm und Z = 4. The five metal atoms form a trigonal bipyramidal cluster skeleton with the Mo atom in equatorial position. The Mo? Au distances range from 275.5 to 280.8 pm, and the Au? Au distances are between 281.2 and 285.6 pm.  相似文献   

7.
The mixed-metal vinylidene clusters HFe3Rh(CO)11(CCHR) (R = H, C6H5) have been synthesized via the reaction of [HFe3(CO)3CCHR][P(C6H5)4] with [RhCl(CO)2]2 in the presence of a thallium salt. The reaction initially gives the [Fe3Rh(CO)11]CCHR][P(C6H5)4] cluster which leads to the final products by protonation. Spectroscopic data indicate a μ42 mode of bonding for the vinylidene ligand. A structure with a Fe3Rh core in a butterfly configuration and in which the rhodium atom occupy a wing-tip site is proposed. The catalytic activity of HFe3Rh(CO)11(CCH(C6H5)) (80% yield) has been checked in hydroformylation and hydrogenation. In hydroformylation the cluster shows the same activity as Rh4(CO)12, whereas in hydrogenation the mixed-metal system shows specific activity; isomerization of 1-heptene to cis and trans 2-heptene takes place with no more than 14% heptane formation. The cluster is broken down during the catalysis, and some H3Fe3CO)93-CCH2(C6H5)) is formed. The latter cluster is not an active catalyst, and under the same conditions use of Rh4(CO)12 results mainly in hydrogenation of 1-heptene. These observations suggest that the active species is a mixed iron-rhodium system.  相似文献   

8.
Decarbonylation of the unsupported clusters Rh4(CO)12, Rh2Co2(CO)12, RhCo3(CO)12 and Co4(CO)12 in a stream of hydrogen has been investigated by temperature programmed decomposition. Kinetic parameters for the thermal decomposition are presented, and the stabilities of the clusters are discussed. The profile for evolution of CO from Rh4(CO)12 indicates that a stable intermediate is formed. In all four cases methane is formed stepwise until most of the CO groups are evolved.  相似文献   

9.
Reaction of [{Rh(μ-Cl)(CO)2}2] with PPh2H in CO-saturated ethanol yields [Rh3(μ-PPh2)3 (CO)6 (PPh2H)], a red trinuclear cluster of rhodium containing a near-planar six-membered Rh3P3 ring; this compound reversibly undergoes elimination of CO and PPh2H to afford [Rh3(μ-PPh2)3(CO)5].  相似文献   

10.
The reaction of less than one equivalent of [Rh2Cl2(nbd)2] with [Ru4H(CO)12BH], which contains a semi-interstitial boron atom, yields the heterometallic boride clustercis-[Rh2Ru4H(CO)12(nbd)2B] which has been characterized by spectroscopic and X-ray diffraction methods. The cluster has an octahedral core, consistent with an 86 electron count. Deprotonation yields the conjugate basecis-[Rh2Ru4(CO)12(nbd)2B] which has been isolated and fully characterized as the [(Ph3P)2N]+ salt. There is little structural perturbation upon going fromcis-[Rh2Ru4H(CO)12(nbd)2B] tocis-[Rh2Ru4(CO)12(nbd)2B] and neither cluster shows a tendency for the formation of thetrans skeletal isomer in contrast to the analogous carbonyl clustercis-[Rh2Ru4(CO)16B]. If the reaction of [Rh2Cl2(nbd)2] with [Ru4H(CO)12BH] is allowed to proceed for 30 min and [R 3PAuCl] (R=Ph, C6H11, 2-MeC6H4) is then added, the clusterscis-[Rh2Ru4(CO)12(nbd)2B(AuPR3)] andcis-[Rh2Ru4(CO)14(nbd)B(AuPR3)] are formed in yields that are dependent upon the initial reaction period. The single crystal structures ofcis-[Rh2Ru4(CO)12(nbd)2B(AuPPh3)] andcis-[Rh2Ru4(CO)14(nbd)B(AuPPh3)] are reported. In contrast to their all-carbonyl analoguescis-[Rh2Ru4(CO)16B(AuPR 3)] (R=Ph or C6H11), the nbd derivatives do not undergocistrans skeletal isomerism.  相似文献   

11.
The reaction of the 'benzyne' cluster Os3H2(CO)9(C6H4) with diphenylacetylene affords the new compound Os3(CO)7(C6H4)[PhCC(H)Ph]2; a single crystal X-ray analysis of this product shows that two PhCC(H)Ph units and the benzyne moiety are bonded to the Os3 core as separate ligands, and that under these conditions there is no ligand condensation.  相似文献   

12.
Synthesis and Dynamic Behaviour of [Rh2(μ-H)3H2(PiPr3)4]+. Contributions to the Reactivity of the Tetrahydridodirhodium Complex [Rh2H4(PiPr3)4] An improved synthesis of [Rh2H4(PiPr3)4] ( 2 ) from [Rh(η3-C3H5)(PiPr3)2] ( 1 ) or [Rh(η3-CH2C6H5)(PiPr3)2] ( 3 ) and H2 is described. Compound 2 reacts with CO or CH3OH to give trans-[RhH(CO)(PiPr3)2] ( 4 ) and with ethene/acetone to yield a mixture of 4 and trans-[RhCH3(CO)(PiPr3)2] ( 5 ). The carbonyl(methyl) complex 5 has also been prepared from trans-[RhCl(CO)(PiPr3)2] ( 6 ) and CH3MgI. Whereas the reaction of 2 with two parts of CF3CO2H leads to [RhH22-O2CCF3) · (PiPr3)2] ( 8 ), treatment of 2 with one equivalent of CF3CO2H in presence of NH4PF6 gives the dinuclear compound [Rh2H5(PiPr3)4]PF6 ( 9a ). The reactions of 2 with HBF4 and [NO]BF4 afford the complexes [Rh2H5(PiPr3)4]BF4 ( 9b ) and trans-[RhF(NO)(PiPr3)2]BF4 ( 11 ), respectively. In solution, the cation [Rh2(μ-H)3H2(PiPr3)4]+ of the compounds 9a and 9b undergoes an intramolecular rearrangement in which the bridging hydrido and the phosphane ligands are involved.  相似文献   

13.
The complexes (η-C5Me5)2Rh2(μ-CO) {μ-η22-C(O)CRCR} are obtained from reactions between (η-C5Me5)2Rh2(CO)2 and the alkynes RCCR (R  CF3, CO2Me, or Ph) at 25°C. The molecular geometry of the complex with R  CF3 has been established by X-ray diffraction; the bridging 'ene-one' unit adopts a μ-η22 conformation. Other complexes isolated from these reactions include (η-C5Me5)Rh(C6R6) (R  CF3, CO2Me), (η-C5Me)2Rh2(C4R4) (R  CO2Me) and (η-C5Me5)2Rh2(CO2C2R2) (R  Ph). The reaction between (η-C5Me5)2Rh2(CO)2 and C6F5CCC6F5 gives (η-C5Me5)2Rh2(CO)2(C6F5C2C6F5). Mononuclear complexes such as (η-C5Me5)Co(C4R4CO) are the major products isolated from reactions between (η-C5Me5)2CO2(CO)2 and alkynes at 25°C.  相似文献   

14.
The anions [Rh6(CO)15X]?, with X = COEt and CO(OMe), have been studied by single-crystal X-ray diffraction. They contain octahedral rhodium clusters, with mean metalmetal distances of 2.779 and 2.765 », respectively. The carbonyl stereochemistry in the two anions is similar to that of Rh6(CO)16, with one terminal CO group replaced by the X ligand. The RhC(carbomethoxy) bond distance (1.96(2) ») is significantly shorter than the RhC(acyl) distance (2.06(2) »).  相似文献   

15.
Cluster metal-containing monomers were obtained and characterized. Mono- and disubstituted products were obtained under mild conditions via the interaction of Rh6(CO)16 with 4-vinylpyridine (4-VPy) in the presence of trimethylamin-N-oxide. Substitution of labile acetonitrile ligand in Rh6(CO)15NCMe by allyldiphenylphosphine (AlPPh2) yields Rh6(CO)14(μ,η2-PPh2CH2CH=CH2) with formation of π-complex. The structures of Rh6(CO)15(4-VPy), Rh6(CO)14(μ,η2-PPh2CH2CH=CH2) and (μ-H)Os3(μ-OCNM2)(CO)9PPH2CH2CH=CH2 have been determined by single-crystal X-ray diffraction studies, as well as by IR-, 1H NMR spectroscopies. The Rh - Rh bond lengths are within 2.72÷2.80 Å. The copolymerization of cluster-containing monomers synthesized with traditional monomers has been studied. It was found that Rh6- and Os3-containing monomers did not change either the ligand surroundings or the structure of cluster monomer framework during polymerization reaction.  相似文献   

16.
Electronic Structure of Rh4(CO)12, a Model for Linear- and Bridge-bonded CO on Rhodium Catalysts The electronic structure of the Rh4(CO)12 cluster containing both linear- and bridgebonded CO groups has been studied by the EHMO method and compared with that of the Ir4(CO)12 cluster with only linear-bonded CO ligands. The charge distribution shows a distinctly higher π-back donation for the bridge-bonded CO groups. This result is compared with experimental data such as bond lengths, force constants of the C? O stretching frequencies and XPS data. It allows further an interpretation of results of CO hydrogenation on supported rhodium catalysts and on rhodium model complexes.  相似文献   

17.
The crystal and molecular structure of the complex containing cobalt-carbon and iron-sulfur cluster cores, (μ-p-CH3C6H4C2S) (μ-n-C3H7S)Fe2(CO)6Co2(CO)6, has been determined by X-ray diffraction method. The crystals are triclinic, space group P&1bar;, with a — 9.139(2), b=9.610(1), c-17.183(2) Å, α = 84.36(1), β-89.45(1), γ=88.15(1)°, V-1501.0 Å3; Z=2, Dc=1.74 g/cm3. R=0.072, Rw=0.081. The results of the structure determination show a cobalt-carbon cluster core formed through the reaction of (μ-p-CH3C6H4C2S)(μ-n-C3H7S)Fe2(CO)6 with Co2(CO)8. In the cobalt-carbon cluster core, the bond length of the original C≡C lengthened to 1.324 Å which is close to the typical value of carbon-carbon double bond. The groups connecting the carbons of the cluster core are in cis position and lie on the opposite side of cobalt atoms. In this complex, the conformation of —SC3H7 is e-type, while that of —SC2C6H4CH3 is a-type.  相似文献   

18.
The synthesis of [Ir2Rh2(CO)12] ( 1 ) by the literature method gives a mixture 1 /[IrRh3(CO)12] which cannot be separated using chromatography. The reaction of [Ir(CO)4]? with 1 mol-equiv. of [Rh(CO)2(THF)2]+ in THF gives pure 1 in 61% yield. Crystals of 1 are highly disordered, unlike those of its derivative [Ir2Rh2(CO)52-CO)3(norbornadiene)2] which were analysed using X-ray diffraction. The ground-state geometry of 1 in solution has three edge-bridging CO's on the basal IrRh2 face of the metal tetrahedron. Time averaging of CO's takes place above 230 K. The CO site exchange of lowest activation energy is due to one synchronous change of basal face, as shown by 2D- and VT-13C-NMR. Substitution of CO by X? in 1 takes place at a Rh-atom giving [Ir2Rh2(CO)82-CO)3X]? (X = Br, I). Substitution by bidentate ligands gives [Ir2Rh2(CO)72-CO)34-L)] (L = norbornadiene, cycloocta-1,5-diene) where the ligand L is chelating a Rh-atom of the basal IrRh2 face. Carbonyl substitution by tridentate ligands gives [Ir2Rh2(CO)62-CO)33-L)] (L = 1,3,5-trithiane, tripod) with L capping the triangular basal face of the metal tetrahedron. Carbonyl scrambling is also observed in these substituted derivatives of 1 and is mainly due to the rotation of three terminal CO's about a local C3 axis on the apical Ir-atom.  相似文献   

19.
Reactions of three alkynes, namely, 1‐heptyne, 3‐hexyne and 1‐phenyl‐1‐butyne, with [Rh4(CO)9(μ‐CO)3] are performed in anhydrous hexane under argon atmosphere with multiple perturbations of alkynes and [Rh4(CO)9(μ‐CO)3]. The reactions are monitored by in situ UV/Vis spectroscopy, and the collected electronic spectra are further analyzed with the band‐target entropy minimization (BTEM) family of algorithms to reconstruct the pure component spectra. Three BTEM estimates of [(μ4‐η2‐alkyne)Rh4(CO)8(μ‐CO)2], in addition to that of [Rh4(CO)9(μ‐CO)3], are successfully reconstructed from the experimental spectra. Time‐dependent density functional theory (TD‐DFT) predicted spectra at the PBE0/DGDZVP level are consistent with the corresponding BTEM estimates. The present study demonstrates that: 1) the BTEM family of algorithms is successful in analyzing multi‐component UV/Vis spectra and results in good spectral estimates of the trace organometallics present; and 2) the subsequent DFT/TD‐DFT methods provide an interpretation of the nature of the electronic excitation and can be used to predict the electronic spectra of similar transition organometallic complexes.  相似文献   

20.
Reaction of C(NMe2)4 with Ni(CO)4 – Syntheses and Structures of [C(NMe2)3][(CO)3NiC(O)NMe2], [C(NMe2)3]2[Ni5(CO)12], and [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] The reaction of C(NMe2)4 with Ni(CO)4 in THF produces the carbamoyl complex [C(NMe2)3][(CO)3NiC(O)NMe2] ( 1 ); side products are the purple cluster compound [C(NMe2)3]2[Ni5(CO)12] · THF ( 2 · THF) and the red cocristallization product [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] ( 3 ). All compounds were studied by X‐ray diffraction analyses. The cations of 3 are all disordered but not those of 1 and 2 . The unit cell of 1 contains two crystallographically independent anions (I and II) which differ in the dihedral angle between the plane of the carbamoyl ligand and the plane defined by the atoms CCarbamoyl–Ni–CO amounting 0° in the anion I and 18° in the anion II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号