首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Haydock D  Yeomans JM 《Ultrasonics》2003,41(7):531-538
Lattice Boltzmann simulations are used to model the enhancement of diffusion which results from Eckart (attenuation driven) acoustic streaming in model porous material. Comparisons are made to Fickian diffusion where no flow is present and the diffusion when a fluid jet is used, which represents a more conventional method of enhancement. We show that streaming can produce a higher diffusion rate for the same average flow velocity and propose that this is the result of the continuation within the material of the driving force that produces the acoustic streaming.  相似文献   

2.
Time-dependent flow of a viscoelastic material through a wavy curved channel is studied. The flow traversing the wavy curved domain is modelled in the curvilinear coordinates. The viscoelastic fluid is described by the fluid relaxation and retardation times, and their variations are considered in relation to the flow characteristic time scale. The wavy walls of the curved channels are in sinusoidal form, with arbitrary phase difference. Using domain perturbation technique, the analytical solution of the model is obtained, including the velocity and the volumetric flow rate. The analytical solution is explained as a function of the flow domain structure, the viscoelastic fluid properties, and the flow generating force. Flow enhancement due to the flow domain is discussed; we have shown that the flow augmentation depends on the properties of the viscoelastic fluid. Furthermore, comparisons have been made with Newtonian fluid flow, and the prominent variations in the flow behaviours have been reported.  相似文献   

3.
The concept of a phase-change material-based, thermal energy storage system is often used for different applications. A theoretical model to determine the thermal and fluid flow characteristics of a thermal energy storage system using a phase-change material has been developed. The model can be used to predict the energy storage behavior of different phase-change materials used with different heat transfer fluids, flow geometries, flow rates and temperatures. Results have been obtained for the case where the phase-change material is Na2SO4·10H2O (Glauber's salt) and the heat transfer fluid is water. The variation of the dimensionless temperatures of the fluid and the solid, and the molten fraction of the solid during the phase change process, with dimensionless time, for different values of Biot number, Stefan number, and the flow parameter have been determined. A discussion of the results obtained and the conclusions drawn from them are also given.  相似文献   

4.
The occurrence of shear bands in a complex fluid is generally understood as resulting from a structural evolution of the material under shear, which leads (from a theoretical perspective) to a non-monotonic stationary flow curve related to the coexistence of different states of the material under shear. In this paper we present a scenario for shear-banding in a particular class of complex fluids, namely foams and concentrated emulsions, which differs from other scenarios in two important ways. First, the appearance of shear bands is shown to be possible both without any intrinsic physical evolution of the material (e.g. via a parameter coupled to the flow such as concentration or entanglements) and without any finite critical shear rate below which the flow does not remain stationary and homogeneous. Secondly, the appearance of shear bands depends on the initial conditions, i.e. the preparation of the material. In other words, it is history dependent. This behaviour relies on the tensorial character of the underlying model (2D or 3D) and is triggered by an initially inhomogeneous strain distribution in the material. The shear rate displays a discontinuity at the band boundary whose amplitude is history dependent and thus depends on the sample preparation.  相似文献   

5.
Thermal performance of a latent heat storage unit is evaluated experimentally. The latent heat thermal energy storage system analyzed in this work is a shell-and-tube type of heat exchanger using paraffin wax (melting point between 58°C and 60°C) as the phase change material. The temperature distribution in the phase change material is measured with time. The influence of mass flow rate and inlet temperature of the heat transfer fluid on heat fraction is examined for both the melting and solidification processes. The mass flow rate of heat transfer fluid (water) is varied in the range of 0.0167 kg/s to 0.0833 kg/s (1 kg/min to 5 kg/min), and the fluid inlet temperature is varied between 75°C and 85°C. The experimental results indicate that the total melting time of the phase change material increases as the mass flow rate and inlet temperature of heat transfer fluid decrease. The fluid inlet temperature influences the heat fraction considerably as compared to the mass flow rate of heat transfer fluid during the melting process of the phase change material.  相似文献   

6.
The rheology of a granular shear flow is studied in a quasi-2D rotating cylinder. Measurements are carried out near the midpoint along the length of the surface flowing layer where the flow is steady and nonaccelerating. Streakline photography and image analysis are used to obtain particle velocities and positions. Different particle sizes and rotational speeds are considered. We find a sharp transition in the apparent viscosity (eta) variation with rms velocity (u). Below the transition depth we find that the rms velocity decreases with depth and eta proportional to u(-1.5) for all the different cases studied. The material approaches an amorphous solidlike state deep in the layer. The velocity distribution is Maxwellian above the transition point and a Poisson velocity distribution is obtained deep in the layer. The results indicate a sharp transition from a fluid to a fluid + solid state with decreasing rms velocity.  相似文献   

7.
Granular material on an inclined plane will flow like a fluid if the angle theta the plane makes with the horizontal is large enough. We study chute flow down a plane using a hydrodynamic model previously used to describe granular Couette flow. Our model predicts a jammed-to-flowing transition as theta is increased even though it does not include solid friction, which might seem necessary to stabilize a state without flow. The transition is driven by coupling between mean and fluctuating velocity. In agreement with experiments and simulations, it predicts flow for layers with a thickness H larger than a critical value H(stop)(theta) and absence of flow for H相似文献   

8.
We investigated numerically the relation between a roller and the pressure distribution to clarify the dynamics of the roller in circular hydraulic jumps. We found that a roller which characterizes a type II jump is associated with two high pressure regions after the jump, while a type I jump (without the roller) is associated with only one high pressure region. Our numerical results show that building up an appropriate pressure field is essential for a roller.  相似文献   

9.
An improved penalty immersed boundary (pIB) method has been proposed for simulation of fluid–flexible body interaction problems. In the proposed method, the fluid motion is defined on the Eulerian domain, while the solid motion is described by the Lagrangian variables. To account for the interaction, the flexible body is assumed to be composed of two parts: massive material points and massless material points, which are assumed to be linked closely by a stiff spring with damping. The massive material points are subjected to the elastic force of solid deformation but do not interact with the fluid directly, while the massless material points interact with the fluid by moving with the local fluid velocity. The flow solver and the solid solver are coupled in this framework and are developed separately by different methods. The fractional step method is adopted to solve the incompressible fluid motion on a staggered Cartesian grid, while the finite element method is developed to simulate the solid motion using an unstructured triangular mesh. The interaction force is just the restoring force of the stiff spring with damping, and is spread from the Lagrangian coordinates to the Eulerian grids by a smoothed approximation of the Dirac delta function. In the numerical simulations, we first validate the solid solver by using a vibrating circular ring in vacuum, and a second-order spatial accuracy is observed. Then both two- and three-dimensional simulations of fluid–flexible body interaction are carried out, including a circular disk in a linear shear flow, an elastic circular disk moving through a constricted channel, a spherical capsule in a linear shear flow, and a windsock in a uniform flow. The spatial accuracy is shown to be between first-order and second-order for both the fluid velocities and the solid positions. Comparisons between the numerical results and the theoretical solutions are also presented.  相似文献   

10.
This paper deals with a new technology for fine grinding of hard materials, based on a high-compression roller mill with ultrasonic capabilities. The machine was tested by producing fine powders from hard rocks, with and without ultrasonic activation, permitting the beneficial effects of ultrasound to be evaluated. The experimental set-up allows the following operational parameters to be measured: material flow, applied torque, angular velocity of the rollers, stress on the shafts, ultrasonic energy applied and the vibration amplitude and phase behaviour of the transducer roller. It is found that the application of ultrasonic energy diminishes the torque required, the stress over the shafts and the total energy consumed for the same grinding results. In addition, a reduction in the erosion of the grinding surfaces was found. The optimal value of the applied ultrasonic power was determined by measuring the specific rate of breakage, a parameter that refers to the energy consumed for the generation of 1 ton of material, for each size range.  相似文献   

11.
Characteristic boundary conditions that are capable of handling general fluid mixtures flow at all flow speeds are developed. The formulation is based on fundamental thermodynamics theories incorporated into an efficient preconditioning scheme in a unified manner. Local one-dimensional inviscid (LODI) relations compatible to the preconditioning system are proposed to obtain information carried by incoming characteristic waves at boundaries accurately. The approach has been validated against a variety of sample problems at a broad range of fluid states and flow speeds. Both acoustic waves and hydrodynamic flow features can pass through the boundaries of computational domain transparently without any unphysical reflection or spurious distortion. The approach can be reliably applied to fluid flows at extensive thermodynamic states and flow speeds in numerical simulations. Moreover, the use of the boundary condition shows to improve the computational efficiency.  相似文献   

12.
The vibration of a thin-walled cylindrical, compliant viscoelastic tube with internal turbulent flow due to an axisymmetric constriction is studied theoretically and experimentally. Vibration of the tube is considered with internal fluid coupling only, and with coupling to internal-flowing fluid and external stagnant fluid or external tissue-like viscoelastic material. The theoretical analysis includes the adaptation of a model for turbulence in the internal fluid and its vibratory excitation of and interaction with the tube wall and surrounding viscoelastic medium. Analytical predictions are compared with experimental measurements conducted on a flow model system using laser Doppler vibrometry to measure tube vibration and the vibration of the surrounding viscoelastic medium. Fluid pressure within the tube was measured with miniature hydrophones. Discrepancies between theory and experiment, as well as the coupled nature of the fluid-structure interaction, are described. This study is relevant to and may lead to further insight into the patency and mechanisms of vascular failure, as well as diagnostic techniques utilizing noninvasive acoustic measurements.  相似文献   

13.
It is shown that the critical self-charge for the onset of instability of a charged drop in a flow of an ideal fluid decreases as the flow velocity of the fluid past the drop increases, i.e., a complex instability arises which is a superposition of the instabilities of the free surface of the drop with respect to the tangential discontinuity of the velocity field at the free surface of the drop and with respect to the self-charge. Zh. Tekh. Fiz. 69, 7–14 (May 1999)  相似文献   

14.
The stability of wall modes in a flexible tube of radius R surrounded by a viscoelastic material in the region R < r < H R in the high Reynolds number limit is studied using asymptotic techniques. The fluid is a Newtonian fluid, while the wall material is modeled as an incompressible visco-elastic solid. In the limit of high Reynolds number, the vorticity of the wall modes is confined to a region of thickness in the fluid near the wall of the tube, where the small parameter , and the Reynolds number is , and are the fluid density and viscosity, and V is the maximum fluid velocity. The regime is considered in the asymptotic analysis, where G is the shear modulus of the wall material. In this limit, the ratio of the normal stress and normal displacement in the wall, , is only a function of H and scaled wave number . There are multiple solutions for the growth rate which depend on the parameter .In the limit , which is equivalent to using a zero normal stress boundary condition for the fluid, all the roots have negative real parts, indicating that the wall modes are stable. In the limit , which corresponds to the flow in a rigid tube, the stable roots of previous studies on the flow in a rigid tube are recovered. In addition, there is one root in the limit which does not reduce to any of the rigid tube solutions determined previously. The decay rate of this solution decreases proportional to in the limit , and the frequency increases proportional to . Received: 5 November 1997 / Revised: 10 March 1998 / Accepted: 29 April 1998  相似文献   

15.
段娟  陈耀钦  朱庆勇 《物理学报》2016,65(3):34702-034702
研究了电渗驱动下幂律流体在有限长微扩张管道内非稳态流动特性.基于Ostwald-de Wael幂律模型,采用高精度紧致差分离散二维Poisson-Nernst-Planck方程及修正的Cauchy动量方程,数值模拟了初始及稳态时刻微扩张管道内幂律流体电渗流流场分布情况,研究了管道截面改变对幂律流体无量纲剪切应变率及无量纲表观黏度的影响,以及无量纲表观黏度对拟塑性流体与胀流型流体流速分布的影响.数值模拟结果显示,当扩张角和无量纲电动宽度一定时,电场驱动下的幂律流体在近壁区域速度响应都很快;初始时刻,近壁处表观黏度的变化受到剪切应变率变化的影响,从而影响了三种幂律流体速度峰值的分布,出现拟塑性流体流速在扩张段上游及扩张段近壁处速度峰值均为幂律流体中最大、而在扩张段下游三种幂律流体速度峰值相近的现象;稳态时刻,幂律流体速度剖面呈现塞型分布,且满足连续性条件下,幂律流体流速随扩张管半径增大而减小,牛顿流体流动规律与宏观尺度下流动规律相同;初始时刻,在相同电动宽度、不同壁面电势作用下,幂律流体在扩张管近壁处剪切应变率分布的差异导致表观黏度分布的差异,并最终导致拟塑性流体与胀流型流体流速分布的差异.  相似文献   

16.
Using the lubrication approximation we investigate two-dimensional steady flow of a thin film of fluid with temperature-dependent viscosity on a uniformly heated or cooled horizontal cylinder, which may be stationary or rotating about its axis, in the case when the Biot number (a measure of heat transfer at the free surface) is large.We show that the film thickness (but not the fluid velocity) may be obtained from that in the isothermal case by a simple re-scaling.  相似文献   

17.
Mathematical and numerical modeling of fluid flows in the domains with free boundaries under co-current gas flow is widely investigated nowadays. A stationary problem of fluid motion in a rectangular cavity with a non-deformed free boundary is studied in a two-dimensional statement. The tangential stresses created on the free boundary by an adjoint gas flow are considered to be a driving force for a fluid motion. The influence of the cavity geometry (cavity aspect ratio) and of the free boundary (length of the open part of the boundary) on the velocity field is investigated numerically. The simulations are carried out for different values of the gas Reynolds numbers. The characteristic values for the flow parameters as well as geometrical characteristics described in this paper are motivated by the main features of the CIMEX-1 experiments prepared for the International Space Station. The paper presents examples of the fluid flow structure in the open cavities and conclusions.  相似文献   

18.
An experimental rig coupled with a high speed data-logging and recording system and a personal computer was specially designed and constructed for the real-time measurement of mechanical strength (in terms of drawdown force) as a function of volumetric flow rate and roller speed for virgin low-density polyethylene (LDPE) and reprocessed LDPE during a filament stretching process. The effect of the number of extrusion passes for the reprocessed LDPE was our main interest. The experimental rig was connected to the end of a single-screw extruder, which was used to melt and extrude the polymers. The LDPE filaments were then solidified and collected for studying the mechanical properties. The mechanical strength of the virgin LDPE and reprocessed LDPE were investigated in both molten and solidified states. The mechanical strengths of the virgin and reprocessed LDPEs under these two states are discussed and compared in terms of change in magnitude under a wide range of processing conditions (volumetric flow rate, die temperature, and roller speed). The results suggested that in the molten state the drawdown force for LDPE melts was dependent on volumetric flow rate, die temperature, roller speed, and the number of reprocessing passes. The drawdown force being affected by the number of reprocessing passes could be explained by molecular degradation and gelation effects when using high volumetric flow rates. In the solidified state, the tensile properties of the solidified LDPE increased with roller speed. The effect of the number of extrusion passes for the solidified LDPE was similar to that for the molten LDPE. In the case of volumetric flow rates, the mechanical properties of the solidified LDPE decreased with increasing volumetric flow rate, whereas those of the molten LDPE exhibited the opposite effect. Thus, the mechanical strength of the molten LDPE could not always be used to assess the mechanical properties of the solidified LDPE.  相似文献   

19.
Compressional waves in heterogeneous permeable media experience attenuation from both scattering and induced pore scale flow of the viscous saturating fluid. For a real, finely sampled sedimentary sequence consisting of 255 layers and covering 30 meters of depth, elastic and poroelastic computer models are applied to investigate the relative importance of scattering and fluid-flow attenuation. The computer models incorporate the known porosity, permeability, and elastic properties of the sand/shale sequence in a binary medium, plane layered structure. The modeled elastic scattering attenuation is well described by stochastic medium theory if two-length scale statistics are applied to reflect the relative thickness of the shale layers when compared to the sand layers. Under the poroelastic Biot/squirt flow model, fluid-flow attenuation from the moderate permeability (10(-14) m2) sands may be separated in the frequency domain from the attenuation due to the low permeability (5 x 10(-17) m2) shale layers. Based on these models, the overall attenuation is well approximated by the sum of the scattering attenuation from stochastic medium theory and the volume weighted average of the attenuations of the sequence member rocks. These results suggest that a high permeability network of sediments or fractures in a lower permeability host rock may have a distinct separable attenuation signature, even if the overall volume of high permeability material is low. Depending on the viscosity of the saturating fluid, the magnitude of the flow-based attenuation can dominate or be dominated by the scattering attenuation at typical sonic logging frequencies (approximately 10 kHz).  相似文献   

20.
Holography is capable of three-dimensional (3D) representation of spatial objects such as fluid interfaces and particle ensembles. Based on this, we adapt it into a 3D flow visualization tool called Holographic Flow Visualization (HFV). This technique provides a novel means of studying spatially and temporally evolving complex fluid flow structures marked by a disperse phase or interfaces of different fluids. This paper demonstrates that HFV is a straightforward technique, especially when the In-line Recording Off-axis Viewing (IROV) configuration is used. The technique can be applied either as a stand-alone experimental tool for studying scalar-based coherent structures, flow instabilities, interactions of different fluids driven by fluid dynamics, interfacial phenomena, or as a precursor to volumetric 3D velocity vector field measurement of complex transient flow dynamics. Experimental results in several complex fluid flows and flames demonstrate the effectiveness of HFV. Different methods are used to mark flow structures undergoing different instabilities: 1) a vortex ring grown out of a drop of polymer suspension falling in water, 2) cascade of a bag-shaped drop of milk in water, and 3) internal flow structures of a jet diffusion flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号