首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An expression is derived for the electric field strength near a wet hailstone in an approximation quadratic in the oscillation amplitude of a charged liquid layer on its surface. It is found that the electric field strength in a small neighborhood of the capillary wave crests grows with the number of a mode governing the initial deformation of the equilibrium (spherical) shape of the liquid layer. Even if the charge is small (when the Rayleigh parameter of the hailstone equals one-hundredth of the value critical for stability against the self-charge), the electric field near the hailstone is high enough for initiating a corona discharge in its vicinity.  相似文献   

2.
An analytical asymptotic expression for the field strength near an ideal incompressible electrically conducting liquid drop nonlinearly vibrating in external electrostatic field E 0 is found in an order of 5/2 in a small parameter. The small parameter here is the amplitude of deformation of the spherical shape of the drop. It is found that the strength of the electric field resulting at the tops of the drop exceeds the corona-initiating field even if E 0 is one order of magnitude lower than the value at which the drop becomes unstable against the induced charge (that is, at such values of E 0 as are observed in storm clouds in full-scale experiments).  相似文献   

3.
An analytic expression for the electrostatic field strength at the free surface of a thin layer of a uniformly charged viscous incompressible liquid is obtained in second-order asymptotic calculations in the amplitude of a periodic capillary-gravity wave propagating over the liquid surface. It is shown that a corona discharge at the crests of the waves can be initiated at subcritical values of the field strength (in the sense of possible realization of the Tonks-Frenkel instability). The electrostatic field strength at the crests of nonlinear waves increases with the wavenumber and the wave amplitude.  相似文献   

4.
An asymptotic analytical solution to an initial boundary-value problem considering (i) the time evolution of the capillary oscillation amplitude as applied to a viscous spheroidal liquid drop placed in a uniform electrostatic field and (ii) the liquid flow velocity field inside the drop is found. The problem is solved in an approximation that is linear in two small parameters: the dimensionless oscillation amplitude and the dimensionless field-induced constant deformation of the equilibrium (spherical) shape of the drop. Terms proportional to the product of the small parameters are retained. In this approximation, interaction between oscillation modes is revealed. It is shown that the intensity of the eddy component of the oscillation-related velocity field depends on the liquid viscosity and the external uniform electrostatic field strength. The intensity of the eddy component decays rapidly with distance from the free surface. The depth to which the eddy flow (which is caused by periodical flows on the free surface) penetrates into the drop is a nonmonotonic function of the polar angle and increases with dimensionless viscosity and field strength.  相似文献   

5.
The capillary oscillations of a charged drop of a viscous liquid are calculated in terms of the boundary layer theory in an approximation linear in oscillation amplitude. Calculation is accompanied with the estimation of a relative error that arises when the exact solution is replaced by an approximate one. It is shown that, for the calculation accuracy in the framework of the boundary layer theory to be about several percent, the thickness of the boundary layer near the free surface of the drop must be several times larger than that at which the intensity of the eddy flow caused by the oscillating surface decreases by e times. As the viscosity of the liquid grows, so does the thickness of the boundary layer.  相似文献   

6.
The influence of a disjoining pressure on the nonlinear oscillations of a thin charged liquid layer on the surface of a spherical solid core is investigated by means of second-order asymptotic calculations. With the initial deformation governed by a kth mode in the spectrum of modes excited via nonlinear interaction, the disjoining pressure causes the frequencies of modes with numbers smaller than k to decrease and the frequencies of modes with numbers larger than k to increase. In the presence of the disjoining pressure, the amplitudes of all nonlinearly excited modes grow compared with the respective amplitudes without the pressure.  相似文献   

7.
Evolutionary equations are derived and solved that describe the time dependence of the oscillation mode amplitudes on the surface of a charged conducting liquid layer resting on a solid core. It is assumed that the layer experiences a multimode initial deformation. The equations are solved asymptotically in the second order of smallness in the small dimensionless amplitude of capillary oscillations on the surface of the layer. Mechanisms behind internal nonlinear resonance interaction between the modes of the liquid layer oscillations and behind energy transfer between the modes both in degenerate and in secondary combination resonances are investigated. It is found that in the degenerate resonance interaction between oscillation modes, the energy may be transferred not only from lower to higher modes but also vice versa if the higher mode is excited at the zero time. This conclusion is valid not only for a liquid layer on the surface of a solid core but also for a drop.  相似文献   

8.
In the fourth order of smallness in the amplitude of a periodic capillary-gravitational wave travelling over the uniformly charged free surface of an ideal incompressible conducting liquid of a finite depth, analytical expressions for the evolution of the nonlinear wave, velocity field potential of the liquid, electrostatic field potential above the liquid, and nonlinear frequency correction that is quadratic in a small parameter are derived. It is found that the dependence of the amplitude of the nonlinear correction to the frequency on the charge density on the free liquid surface and on the thickness of the liquid layer changes qualitatively when the layer gets thinner. In thin liquid layers, the resonant wavenumber depends on the surface charge density, while in thick layers, this dependence is absent.  相似文献   

9.
Capillary oscillations on the free surface of a viscous conductive liquid drop placed in an electrostatic field are calculated. In an approximation linear in stationary deformation amplitude, the drop in this field has the shape of a spheroid extended along the field. The initial problem is modified and simplified in terms of the boundary layer theory by applying an approximation that is linear in the oscillation amplitude and quadratic in the eccentricity of the drop. The accuracy of the approximate solution relative to an exact one is estimated. It is shown that, with a rise in the electrostatic field strength (with an increase in the eccentricity of the drop) and in the viscosity of the liquid, the boundary layer at the free surface of the drop becomes thicker.  相似文献   

10.
The stability of a dielectric drop, which in an external electrostatic field takes on the equilibrium shape of a prolate spheroid, is analyzed using the principle of minimum total potential energy of an isolated system. The values of the Taylor parameter and degree of spheroidal deformation at which the drop loses stability are determined for a wide range of dielectric constants of the substance of the drop. Zh. Tekh. Fiz. 69, 23–28 (July 1999)  相似文献   

11.
It is found theoretically that the critical conditions under which a charged liquid surface becomes unstable against the electric charge relax as a result of interaction between capillary-gravitational and convective flows in the liquid. As the surface charge density approaches a value critical in terms of development of Tonks-Frenkel instability, convection in the liquid arises at a temperature gradient however small, this effect depending on the liquid layer thickness.  相似文献   

12.
It is shown that the motion of a charged particle in a uniform electric field, obeying Dirac-Lorentz relativistic equation of motion with radiation reaction, is confined in a plane. Further, the component of velocity normal to the lines of force continuously decreases to zero. Thus, the motion asymptotically tends to a rectilinear motion along the line of force. The motion is completely described up to a correcting factor 1+0[(e 3 F/m 2 c 4)2]e 3 F/m 2 c 45.10–14 F for electrons,F in volts cm–1.  相似文献   

13.
The characteristics of the breakup of a charged drop in a uniform electrostatic field are calculated on the basis of Onsager’s principle of minimum dissipation of energy in nonequilibrium processes. The ranges of the physical parameters where daughter droplets are emitted from two tips and from one tip of an unstable parent drop and when emission is completely absent are found. The dimensionless radii, charges, and specific charges of the daughter droplets are determined. Zh. Tekh. Fiz. 69, 26–30 (December 1999)  相似文献   

14.
The dispersion relation for the spectrum of capillary waves of a spherical layer of a viscous liquid coating a solid spherical core with a layer of finite thickness is introduced and analyzed. It is shown that the existence of two mechanisms for the viscous dissipation of the energy of the capillary-wave motions of the liquid, viz., damping in the bulk of the layer and on the solid core, leads to restriction of the spectrum of the realizable capillary waves of the liquid on both the high-and low-mode sides. At a fixed value of the system charge which is supercritical for the first several capillary modes, the maximum growth rates in the case of a small solid core are possessed by modes from the middle of the band of unstable modes, while in thin liquid layers the highest of the unstable modes have the largest growth rates. This points out differences in the realization of the instability of the charged surface of the spherical layer for small and large relative sizes of the solid core. Zh. Tekh. Fiz. 67, 8–13 (September 1997)  相似文献   

15.
The instability of the charged free surface of a horizontal liquid layer heated from the solid bottom against excess electric charge is studied theoretically for the case in which this type of instability is combined with thermal-convective instability. The structure of the total spectrum of unstable wave flows and physical parameters influencing the structure of the spectrum are determined.  相似文献   

16.
The smooth non-monotonous dependence of the metal surface impedance upon the magnetic field H is investigated theoretically for the cases of diffuse and specular reflection of electrons from the specimen boundary. The type of the electron-surface interaction has been found to have very little effect on the magnitude of the impedance Zα(H) in the range of weak magnetic fields [equation (1)]. In a strong field [equation (2)] the surface impedance behaves differently for diffuse and specular reflection. The form of the Zα(H) function depends essentially on the ratio of the electromagnetic wave frequency ω and the collision frequency of electrons ν. This provides a possibility of establishing experimentally the frequency of electron collisions with volume scatterers.  相似文献   

17.
A method is proposed for determination of electric-field intensity distribution on a plane over which charges of random magnitude and sign are distributed. The distribution functions for normal and tangent components of electric field intensity in this plane are obtained.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 95–99, June, 1975.  相似文献   

18.
V. Shikin 《JETP Letters》2003,78(7):461-465
The traditional approach to the development of instability of a weakly charged helium surface needs correction. It is shown that the well-known electrostatically “equipotential” Frenkel-Tonks scenario should be transformed to a more general sequence of events that would remain reasonable when the 2D charge density tends to zero. Under these conditions, the priorities change and the instability development through nucleation (with the formation of separate multicharged dimples) becomes preferable. The experiment qualitatively confirms the predictions of the theory.  相似文献   

19.
Nonlinear oscillations of a layer of an ideal incompressible perfectly conducting liquid on the surface of a charged melting hailstone (solid core) are studied using analytical asymptotic calculations of the second order of smallness in initial deformation amplitude. Specifically, it is shown that, when the thickness of the layer is much less than the characteristic linear size (radius) of the solid core, the size of the core considerably influences the amplitudes of capillary oscillation modes arising on the surface of the charged layer via nonlinear interaction. It is found that, as the liquid layer on the surface of the solid core gets thinner, the energy in the spectrum of nonlinearly excited modes is redistributed with its maximum shifting toward higher (larger number) modes.  相似文献   

20.
An electrostatic interaction between two separate, grounded, uncharged, perfectly conducting spheres of different radii in a uniform electrostatic field is investigated. It is shown that at a small center-to-center distance of the spheres, the force of the polarization interaction between the spheres depends appreciably more weakly on that distance in comparison to the force of the electrostatic interaction of two elementary dipoles as it should be in view of the interaction between two like polarization charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号