首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The Higgs boson search has shifted from LEP2 to the Tevatron and will subsequently move to the LHC. The current limits from the Tevatron and the prospective sensitivities at the LHC are often interpreted in specific MSSM scenarios. For heavy Higgs boson production and subsequent decay into or τ+τ, the present Tevatron data allow one to set limits in the MA–tan β plane for small MA and large tan β values. Similar channels have been explored for the LHC, where the discovery reach extends to higher values of MA and smaller tan β. Searches for MSSM charged Higgs bosons, produced in top decays or in association with top quarks, have also been investigated at the Tevatron and the LHC. We analyze the current Tevatron limits and prospective LHC sensitivities. We discuss how robust they are with respect to variations of the other MSSM parameters and possible improvements of the theoretical predictions for Higgs boson production and decay. It is shown that the inclusion of supersymmetric radiative corrections to the production cross sections and decay widths leads to important modifications of the present limits on the MSSM parameter space. The impact on the region where only the lightest MSSM Higgs boson can be detected at the LHC is also analyzed. We propose to extend the existing benchmark scenarios by including additional values of the higgsino mass parameter μ. This affects only slightly the search channels for a SM-like Higgs boson, while having a major impact on the searches for non-standard MSSM Higgs bosons.  相似文献   

2.
We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavor physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed.  相似文献   

3.
We investigate the prospects for Central Exclusive Diffractive (CED) production of BSM Higgs bosons at the LHC using forward proton detectors installed at 220 m and 420 m distance around ATLAS and/or CMS. We update a previous analysis for the MSSM taking into account improvements in the theoretical calculations and the most recent exclusion bounds from the Tevatron. We extend the MSSM analysis to new benchmark scenarios that are in agreement with the cold dark matter relic abundance and other precision measurements. We analyze the exclusive production of Higgs bosons in a model with a fourth generation of fermions. Finally, we comment on the determination of Higgs spin–parity and coupling structures at the LHC and show that the forward proton mode could provide crucial information on the CP\mathcal{CP} properties of the Higgs bosons.  相似文献   

4.
The search for MSSM Higgs bosons will be an important goal at the LHC. We analyze the search reach of the CMS experiment for the heavy neutral MSSM Higgs bosons with an integrated luminosity of 30 or 60 fb-1. This is done by combining the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of the MSSM Higgs-boson properties. The results are interpreted in MSSM benchmark scenarios in terms of the parameters tan β and the Higgs-boson mass scale, MA. We study the dependence of the 5σ discovery contours in the MA–tan β plane on variations of the other supersymmetric parameters. The largest effects arise from a change in the higgsino mass parameter μ, which enters both via higher-order radiative corrections and via the kinematics of Higgs decays into supersymmetric particles. While the variation of μ can shift the prospective discovery reach (and correspondingly the ”LHC wedge” region) by about Δtan β=10, we find that the discovery reach is rather stable with respect to the impact of other supersymmetric parameters. Within the discovery region we analyze the accuracy with which the masses of the heavy neutral Higgs bosons can be determined. We find that an accuracy of 1–4% should be achievable, which could make it possible in favorable regions of the MSSM parameter space to experimentally resolve the signals of the two heavy MSSM Higgs bosons at the LHC.  相似文献   

5.
Recent results reported by the ATLAS and CMS experiments on the search for a SM-like Higgs boson both show an excess for a Higgs mass near 125 GeV, which is mainly driven by the γγ   and ZZ?ZZ? decay channels, but also receives some support from channels with a lower mass resolution. We discuss the implications of this possible signal within the context of the minimal supersymmetric Standard Model (MSSM), taking into account previous limits from Higgs searches at LEP, the Tevatron and the LHC. The consequences for the remaining MSSM parameter space are investigated. Under the assumption of a Higgs signal we derive new lower bounds on the tree-level parameters of the MSSM Higgs sector. We also discuss briefly an alternative interpretation of the excess in terms of the heavy CP-even Higgs boson, a scenario which is found to be still viable.  相似文献   

6.
In regions of large tanbeta and small mAlpha, searches for heavy neutral minimal supersymmetric standard model (MSSM) Higgs bosons at the Tevatron are promising. At the same time, rates in direct dark matter experiments, such as CDMS, are enhanced in the case of large tanbeta and small mAlpha. As a result, there is a natural interplay between the heavy, neutral Higgs searches at the Tevatron and the region of parameter space explored by CDMS. We show that if the lightest neutralino makes up the dark matter of our universe, current limits from CDMS strongly constrain the prospects of heavy, neutral MSSM Higgs discovery at the Tevatron unless |mu| greater or approximately 400 GeV. The limits of CDMS projected for 2007 will increase this constraint to |mu| greater or approximately 800 GeV. If CDMS does observe neutralinos in the near future, however, it will make the discovery of Higgs bosons at the Tevatron far more likely.  相似文献   

7.
Abdelhak Djouadi 《Pramana》2003,60(2):215-238
I briefly review the Higgs sector in the standard model (SM) and its minimal aupersymmetric extension, the MSSM. After summarizing the properties of the Higgs bosons and the present experimental constraints, I will discuss the prospects for discovering these particle at the upgraded Tevatron, the large hadron collider (LHC) and a high-energye + e linear collider. The possibility of studying the properties of the Higgs particles will be then summarized.  相似文献   

8.
《Physical review letters》2011,107(12):121801
We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb(-1). This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high tanβ. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limits on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c(2). We interpret our result in the MSSM parameter space, excluding tanβ values down to 25 for Higgs boson masses below 170 GeV/c(2).  相似文献   

9.
The production mechanisms and decay modes of the heavy neutral and charged Higgs bosons in the Minimal Supersymmetric Standard Model are investigated at future e + e ? colliders in the TeV energy regime. We generate supersymmetric particle spectra by requiring the MSSM Higgs potential to produce correct radiative electroweak symmetry breaking, and we assume a common scalar mass m0, gaugino mass m1/2 and trilinear coupling A, as well as gauge and Yukawa coupling unification at the Grand Unification scale. Particular emphasis is put on the low tan β solution in this scenario where decays of the Higgs bosons to Standard Model particles compete with decays to supersymmetric charginos/neutralinos as well as sfermions. In the high tan β case, the supersymmetric spectrum is either too heavy or the supersymmetric decay modes are suppressed, since the Higgs bosons decay almost exclusively into b and τ pairs. The main production mechanisms for the heavy Higgs particles are the associated AH production and H +H? pair production with cross sections of the order of a few fb.  相似文献   

10.
We show that the use of forward proton detectors at the LHC installed at 220 m and 420 m distance around ATLAS and/or CMS can provide important information on the Higgs sector of the MSSM. We analyse central exclusive production of the neutral -even Higgs bosons h and H and their decays into bottom quarks, τ leptons and W bosons in various MSSM benchmark scenarios. Using plausible estimates for the achievable experimental efficiencies and the relevant background processes, we find that the prospective sensitivity of the diffractive Higgs production will allow one to probe interesting regions of the MA–tanβ parameter plane of the MSSM. Central exclusive production of the -even Higgs bosons of the MSSM may provide a unique opportunity to access the bottom Yukawa couplings of the Higgs bosons up to masses of MH≲ 250 GeV. We also discuss the prospects for identifying the -odd Higgs boson, A, in diffractive processes at the LHC.  相似文献   

11.
P. Igo-Kemenes 《Pramana》2004,62(3):555-560
During the twelve years of operation of thee + e collider LEP, the associated collaborations, ALEPH, DELPHI, L3 and OPAL, have extensively searched for Higgs bosons over a broad range of masses. We present the final results from LEP for the standard model Higgs boson which are obtained from a statistical combination of the data from the four experiments. We also present preliminary combined results for neutral Higgs bosons in the minimal supersymmetric model (MSSM) where the Higgs sector is assumed to be CP invariant. Finally, we discuss an alternative MSSM scenario including CP violation in the Higgs sector.  相似文献   

12.
This paper presents the final interpretation of the results from DELPHI on the searches for Higgs bosons in the minimal supersymmetric extension of the Standard Model (MSSM). A few representative scenarios are considered, that include CP conservation and explicit CP violation in the Higgs sector. The experimental results encompass the searches for neutral Higgs bosons at LEP1 and LEP2 in final states as expected in the MSSM, as well as LEP2 searches for charged Higgs bosons and for neutral Higgs bosons decaying into hadrons independent of the quark flavour. The data reveal no significant excess with respect to background expectations. The results are translated into excluded regions of the parameter space in the various scenarios. In the CP-conserving case, these lead to limits on the masses of the lightest scalar and pseudoscalar Higgs bosons, h and A, and on tanβ. The dependence of these limits on the top quark mass is discussed. Allowing for CP violation reduces the experimental sensitivity to Higgs bosons. It is shown that this effect depends strongly on the values of the parameters responsible for CP violation in the Higgs sector.  相似文献   

13.
Results are presented on the discovery potential for MSSM neutral Higgs bosons in the mh-max scenario. The region of large cosβ, between 15 and 50, and mass between ≈95 and 130 GeV is considered in the framework of the ATLAS experiment at the large hadron collider (LHC), for a centre-of-mass energy = 14 TeV. This parameter region is not fully covered by the present data either from LEP or from Tevatron. The h/A bosons, supposed to be very close in mass in that region, are studied in the channel h/A→μ+μ- accompanied by two b-jets. The study includes a method to control the most copious background, Z→μ+μ- accompanied by two b-jets. A possible contribution of the H boson to the signal is also considered.  相似文献   

14.
《Nuclear Physics B》2001,600(1):21-38
Decays of the top quark induced by flavor changing neutral currents (FCNC) are known to be extremely rare events within the Standard Model. This is so not only for the decay modes into gauge bosons, but most notably in the case of the Higgs channels, e.g., tHSM+c, with a branching fraction of 10−13 at most. Therefore, detection of FCNC top quark decays in a future high-energy, and high-luminosity, machine like the LHC or the LC would be an indisputable signal of new physics. In this paper we show that within the simplest extension of the SM, namely the general two-Higgs-doublet model, the FCNC top quark decays into Higgs bosons, t→(h0,H0,A0)+c, can be the most favored FCNC modes — comparable or even more efficient than the gluon channel tg+c. In both cases the optimal results are obtained for Type II models. However, only the Higgs channels can have rates reaching the detectable level (10−5), with a maximum of order 10−4 which is compatible with the charged Higgs bounds from radiative B-meson decays. We compare with the previous results obtained in the Higgs sector of the MSSM.  相似文献   

15.
The recent discovery of a new boson at the LHC, which resembles a SM-like Higgs boson with m h =125 GeV, is starting to provide strong guidelines into SUSY model building. For instance, the identification of such a state with the lightest CP-even Higgs boson of the MSSM (h 0), requires large values of tanβ and/or heavy sfermions. One outcome of this result is the possibility to solve the SUSY flavor and CP problems by decoupling, which points towards some realization of Split-inspired SUSY scenarios, in which scalars are much heavier than gauginos and higgsinos. However, we argue here that the remaining Higgs bosons of the MSSM (H 0, A 0, H ±) do not have to be as heavy as the sfermions, and having them with masses near the EW scale does not pose any conflict with current MSSM constraints. We discuss then some SUSY scenarios with heavy sfermions, from a bottom-up approach, which contain the full Higgs sector, as well as a possible dark matter candidate, with masses near the EW scale, and identify distinctive signals from these scenarios that could be searched at the LHC.  相似文献   

16.
Rohini M Godbole 《Pramana》2006,67(5):835-847
In this talk I discuss some aspects of CP violation (CPV) in supersymmetry (SUSY) as well as in the Higgs sector. Further, I discuss ways in which these may be probed at hadronic colliders. In particular I will point out the ways in which studies in the sector at the Tevatron may be used to provide information on this and how the search can be extended to the LHC. I will then follow this by a discussion of the CP mixing induced in the Higgs sector due to the above-mentioned CPV in the soft SUSY breaking parameters and its effects on the Higgs phenomenology at the LHC. I would then point out some interesting aspects of the phenomenology of a moderately light charged Higgs boson, consistent with the LEP constraints, in this scenario. Decay of such a charged Higgs boson would also allow a probe of a light (≲50 GeV), CP-violating (CPV) Higgs boson. Such a light neutral Higgs boson might have escaped detection at LEP and could also be missed at the LHC in the usual search channels.  相似文献   

17.
The data collected by the OPAL experiment at GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54 pb. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, GeV and GeV are obtained for , no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range is excluded for minimal scalar top mixing and GeV. More general scans of the MSSM parameter space are also considered. Received: 27 October 1998 / Published online: 19 February 1999  相似文献   

18.
The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral Higgs bosons which are predicted by the Minimal Supersymmetric standard model (MSSM). The data of the four collaborations are statistically combined and examined for their consistency with the background hypothesis and with a possible Higgs boson signal. The combined LEP data show no significant excess of events which would indicate the production of Higgs bosons. The search results are used to set upper bounds on the cross-sections of various Higgs-like event topologies. The results are interpreted within the MSSM in a number of “benchmark” models, including CP-conserving and CP-violating scenarios. These interpretations lead in all cases to large exclusions in the MSSM parameter space. Absolute limits are set on the parameter cosβ and, in some scenarios, on the masses of neutral Higgs bosons.  相似文献   

19.
The production of pairs of charged Higgs bosons as predicted by the minimal supersymmetric standard model (MSSM) via the gluon fusion mechanism is investigated. The amplitudes at the leading one-loop order for the parton process are calculated with the complete set of MSSM particles. Numerical results are presented for the cross section of the inclusive hadron process at the LHC. Received: 20 September 1999 / Published online: 27 January 2000  相似文献   

20.
We discuss the constraints on supersymmetry in the Higgs sector arising from LHC searches, rare B decays and dark matter direct detection experiments. We show that constraints derived on the mass of the lightest h 0 and the CP-odd A 0 bosons from these searches are covering a larger fraction of the SUSY parameter space compared to searches for strongly interacting supersymmetric particle partners. We discuss the implications of a mass determination for the lightest Higgs boson in the range 123<M h <127?GeV, inspired by the intriguing hints reported by the ATLAS and CMS Collaborations, as well as those of a non-observation of the lightest Higgs boson for MSSM scenarios not excluded at the end of 2012 by LHC and direct dark matter searches and their implications on LHC SUSY searches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号