首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress has been implicated in mediation of vascular disorders. In the presence of vanadate, H(2)O(2) induced tyrosine phosphorylation of PLD1, protein kinase C-alpha (PKC-alpha), and other unidentified proteins in rat vascular smooth muscle cells (VSMCs). Interestingly, PLD1 was found to be constitutively associated with PKC-alpha in VSMCs. Stimulation of the cells by H(2)O(2) and vanadate showed a concentration-dependent tyrosine phosphorylation of the proteins in PLD1 immunoprecipitates and activation of PLD. Pretreatment of the cells with the protein tyrosine kinase inhibitor, genistein resulted in a dose-dependent inhibition of H(2)O(2)-induced PLD activation. PKC inhibitor and down-regulation of PKC abolished H(2)O(2)-stimulated PLD activation. The cells stimulated by oxidative stress (H(2)O(2)) caused increased cell migration. This effect was prevented by the pretreatment of cells with tyrosine kinase inhibitors, PKC inhibitors, and 1-butanol, but not 3-butanol. Taken together, these results suggest that PLD might be involved in oxidative stress-induced migration of VSMCs, possibly via tyrosine phosphorylation and PKC activation.  相似文献   

2.
Reactive oxygen species (ROS) has been implicated as an inducer of NF-kappaB activity in numbers of cell types where exposure of cells to ROS such as H(2)O(2) leads to NF-kappaB activation. In contrast, exposure to oxidative stress in certain cell types induced reduction of tumor necrosis factor (TNF)- induced NF-kappaB activation. And various thiol-modifying agents including gold compounds and cyclopentenone prostaglandins inhibit NF-kappaB activation by blocking IkappaB kinase (IKK). To understand such conflicting effect of oxidative stress on NF- kappakB activation, HeLa cells were incubated with H(2)O(2) or diamide and TNF-induced expression of NF-kappaB reporter gene was measured. NF-kappaB activation was significantly blocked by these oxidizing agents, and the inhibition was accompanied with reduced nuclear NF-kappaB and inappropriate cytosolic IkappaB degradation. H(2)O(2) and diamide also inhibited IKK activation in HeLa and RAW 264.7 cells stimulated with TNF and lipopolysaccharide, respectively, and directly blocked IKK activity in vitro. In cells treated with H(2)O(2) alone, nuclear NF-kappaB was induced after 2 h without detectable degradation of cytosolic IkappaBalphaa or activation of IKK. Our results suggest that ROS has a dual effect on NF-kappaB activation in the same HeLa cells: it inhibits acute IKK-mediated NF-kappakB activation induced by inflammatory signals, while longer-term exposure to ROS induces NF-kappaB activity through an IKK-independent pathway.  相似文献   

3.
4.
Biliverdin reductase A (BLVRA), an enzyme that converts biliverdin to bilirubin, has recently emerged as a key regulator of the cellular redox cycle. However, the role of BLVRA in the aging process remains unclear. To study the role of BLVRA in the aging process, we compared the stress responses of young and senescent human diploid fibroblasts (HDFs) to the reactive oxygen species (ROS) inducer, hydrogen peroxide (H2O2). H2O2 markedly induced BLVRA activity in young HDFs, but not in senescent HDFs. Additionally, depletion of BLVRA reduced the H2O2-dependent induction of heme oxygenase-1 (HO-1) in young HDFs, but not in senescent cells, suggesting an aging-dependent differential modulation of responses to oxidative stress. The role of BLVRA in the regulation of cellular senescence was confirmed when lentiviral RNAi- transfected stable primary HDFs with reduced BLVRA expression showed upregulation of the CDK inhibitor family members p16, p53, and p21, followed by cell cycle arrest in G0-G1 phase with high expression of senescence-associated β-galactosidase. Taken together, these data support the notion that BLVRA contributes significantly to modulation of the aging process by adjusting the cellular oxidative status.  相似文献   

5.
Fibroblasts of the line 3T3 from swiss albino mice were exposed to ultraviolet A (UVA) irradiation. The cells were synchronized by treatment with nocodazole and mitotic shake-off, and then exposed to UVA irradiation in different stages of the cell cycle. Their photosensitivity varied through the cell cycle, being greatest in the G2 phase. UVA irradiation was found to induce the formation of multinucleated cells. Cells in the G1 phase were found to be most prone to multinucleation 15 min after UVA irradiation, while cells exposed to UVA irradiation in S and G2 phases contained the largest fractions of multinucleated cells 24 h after treatment. The present results indicate that multinucleated cells are formed by fusion of two or more cells shortly after UVA irradiation of early G1 cells, while impairment of cytokinesis is a possible explanation for the delayed formation of multinucleated cells after irradiation in S and G2.  相似文献   

6.
When cells are first exposed to low levels of oxidative stress, they develop a resistance to a subsequent challenge of the same stress, even at higher levels. Although some protein(s) induced by oxidative stress likely mediated this adaptive response, the nature of these proteins is unknown. In this study, the total proteins extracted from human U937 leukemia cells exposed to 50 micromM H(2)O(2) for 24 h to induce an optimal protective response were analyzed by two-dimensional polyacrylamide gel electrophoresis. H(2)O(2) treatment induced elevation of level of 34 protein spots. An analysis of these spots by a matrix associated laser desorption/ionization time-of-flight mass spectrometry identified 28 of the H(2)O(2)-induced proteins. These include proteins involved in energy metabolism, translation and RNA processing, chaperoning or mediating protein folding, cellular signaling, and redox regulation, as well as a mitochondrial channel component, and an actin-bundling protein. Therefore, it appears that the cellular adaptation to oxidative stress is a complex process, and is accompanied by a modulation of diverse cellular functions.  相似文献   

7.
Medulloblastoma is a common malignant brain tumor in the pediatric age. The current therapeutics present serious collateral effects. Polyphenols α-mangostin and nordihydroguaiaretic acid (NDGA) exert potent antitumoral activity in different cancer models, although their antitumoral effects have not been described in medulloblastoma cells yet. This study aimed to examine the proapoptotic effects of these polyphenols on human medulloblastoma cells. Medulloblastoma cell line Daoy was incubated with increasing concentrations of α-mangostin or NDGA for 24 h. The cell viability was analyzed using crystal violet and trypan blue dyes. Determination of the glutathione (GSH)/glutathione disulfide (GSSG) ratio and levels of carbonylated proteins was performed to evaluate the oxidative stress. Cell cycle progression and induction of cell death by fluorochrome-couple and TUNEL assays were evaluated using flow cytometry assays. Individual treatments with α-mangostin or NDGA decreased the viability of Daoy cells in a dose-dependent manner, inducing G2/M and S-G2/M cell cycle arrest, respectively. Both polyphenols induced cell death and increased oxidative stress. Very interestingly, α-mangostin showed more potent effects than NDGA. Our results indicate that α-mangostin and NDGA exert important cytostatic and cytotoxic effects in the Daoy cell line. These data highlight the potential usefulness of these compounds as an alternative strategy in medulloblastoma treatment.  相似文献   

8.
肾上皮细胞损伤可促进肾结石形成.本文采用过氧化氢(H2O2)对人类肾小管上皮细胞(HKC)进行了氧化损伤,采用扫描电子显微镜(SEM)、X射线衍射分析(XRD)和倒置显微镜观察了HKC损伤前后的形态变化及其调控草酸钙(CaOxa)晶体成核、生长的差异;采用zeta电位分析仪检测了损伤前后HKC表面的zeta电位变化.结果表明,H2O2能明显地损伤HKC,降低细胞活性,且在H2O2浓度范围0.1~0.5mmol/L、作用时间0.5~1.5h内具有明显的剂量和时间的依赖性;使用0.5mmol/LH2O2作用1.5h可使HKC损伤达到饱和状态.HKC损伤程度增加后,其诱导的晶体数量显著增加,但晶体尺寸增加不明显(P0.05),表明损伤细胞诱导尿石症形成主要是增加晶体的成核位点而非促进晶体的生长.本文所建立的HKC氧化损伤的模型有助于进一步阐明CaOxa结石形成的细胞机制.  相似文献   

9.
Ultraviolet-A (UVA) radiation causes significant oxidative stress because it leads to the generation of reactive oxygen species (ROS), leading to extensive cellular damage and eventual cell death either by apoptosis or necrosis. We evaluated the protective effects of cyanidin-3-O-beta-glucopyranoside (C-3-G) against UVA-induced apoptosis and DNA fragmentation in a human keratinocyte cell line (HaCaT). Treatment of HaCaT cells with C-3-G before UVA irradiation inhibited the formation of apoptotic cells (61%) and DNA fragmentation (54%). We also investigated antioxidant properties of C-3-G in HaCaT cells against ROS formation at apoptotic doses of UVA; C-3-G inhibited hydrogen peroxide (H2O2) release (an indicator of cellular ROS formation) after UVA irradiation. Further confirmation of the potential of C-3-G to counteract UVA-induced ROS formation comes from our demonstration of its ability to enhance the resistance of HaCaT cells to the apoptotic effects of both H2O2 and the superoxide anion (O2*-), two ROS involved in UVA-oxidative stress. Furthermore, in terms of Trolox Equivalent Antioxidant Activity, C-3-G treatment led to a greater increase in antioxidant activity in the membrane-enriched fraction than in the cytosol (55% vs 19%). The protective effects against UVA-induced ROS formation can be attributed to the higher membrane levels of C-3-G incorporation. These encouraging in vitro results support further research into C-3-G (and other anthocyanins) as novel agents for skin photoprotection.  相似文献   

10.
Exposure of skin to solar UV radiation induces oxidative stress and suppression of cell-mediated immune responses. These effects are associated with the greater risk of several skin disorders including photoaging and photocarcinogenesis. We have shown that UV-induced infiltrating leukocytes contribute in developing oxidative stress in UV-irradiated skin. The peak period of UV-induced infiltrating leukocytes lies between 48 and 72 h after UV exposure of the skin. In this study we demonstrated that UV (90 mJ/cm2)-induced infiltrating CD11b+ cells in C3H/HeN mice skin were the major source of oxidative stress. Hydrogen peroxide (H2O2) was determined as a marker of oxidative stress. Flow cytometric analysis of viable cells revealed that the number of CD11b+H2O2+ cells were significantly higher (31.8%, P < 0.001) in UV-irradiated skin in comparison with non-UV-exposed skin (0.4%). Intraperitoneal administration of monoclonal antibodies to CD11b (rat IgG2b) to C3H/HeN mice inhibited UVB-induced infiltration of leukocytes, as evidenced by reduction in myeloperoxidase activity (64-80%, P < 0.0005), concomitant with significant reduction in H2O2 production both in epidermis and dermis (66-83%, P < 0.001-0.0005) when compared with the administration of rat IgG2b isotype of anti-CD11b. Furthermore, CD11b+ and CD11b- cell subsets were separated by immunomagnetic cell isolation technique from total epidermal and dermal single cell suspensions obtained 48 h after UV irradiation of the skin and analyzed for H2O2 production. Analytical data revealed that CD11b+ cell population from UV-irradiated skin resulted in significantly higher production of total H2O2 in both epidermis and dermis (87-89%, P < 0.0001) in comparison with CD11b- cell population (11-13% of total H2O2). These data revealed that infiltrating CD11b+ cells were the major source of oxidative stress in UV-irradiated skin and thus may contribute to photoaging and promotion of skin tumor growth within the UV-irradiated skin. Together, these data suggest that reduction in UV-induced skin infiltration of CD11b+ cells may be an alternative and effective strategy to reduce solar UV light-induced oxidative stress-mediated skin disorders including photoaging and photocarcinogenesis.  相似文献   

11.
12.
13.
Numerous types of cells have been shown to undergo apoptosis when exposed to oxidant agent such as hydrogen peroxide. In order to understand the functional relationship between the anti- and pro-apoptotic regulatory proteins in the cells under oxidant stress, we have studied the level of expression of apoptosis regulatory proteins, bcl-2 and bax, in human leukemia HL-60 cells. The exposure of HL-60 cells to different concentrations of H2O2 for 6 h resulted in a typical apoptosis of the cells as characterized by flow cytometry, cell cycle analysis, and DNA fragmantation. There was a block in G1 to S transition and apoptotic cells were mainly derived from S and G2 cells. Kinetic study demonstrated that the levels of both bcl-2-mRNA and -protein expression were decreased with the progression of cellular apoptosis whereas the level of bax-mRNA was unchanged but the expressed bax-protein was not detectable. Cycloheximide, a nonspecific translation inhibitor, did not prevent the hydrogen peroxide-mediated apoptosis in HL-60 cells. These results suggest that the regulation of bcl-2, but not of bax are important factor in the oxidative stress-induced apoptosis in HL-60 cells.  相似文献   

14.
Melanins are ubiquitous catecholic pigments, formed in organelles called melanosomes within melanocytes, the function of which is to protect skin against harmful effects of UV radiation. Melanosomes within melanoma cells are characteristically abnormal, with fragmented melanin and disrupted membranes. We hypothesize that the disruption of melanosomal melanin might be an early event in the etiology and progression of melanoma, leading to increased oxidative stress and mutation. In this report, we examine the effect of a combination of UV treatment and metal ion exposure on melanosomes within melanocytes, as well as their ability to act as pro-oxidants in ex situ experiments, and assay the effects of this treatment on viability and cell cycle progression. UVB exposure causes morphologic changes of the cells and bleaching of melanosomes in normal melanocytes, both significantly enhanced in Cu(II) and Cd(II)-treated cells, as observed by microscopy. The promoted bleaching by Cu(II) is due to its ability to redox cycle under oxidative conditions, generating reactive oxygen species; verified by the observed enhancement of hydroxyl radical generation when isolated melanosomes were treated with both Cu(II) ions and UVB, as assayed by DNA clipping. Single-dose UVB/Cu treatment does not greatly affect cell viability or cell cycle progression in heavily pigmented cells, but did so in an amelanotic early stage melanoma cell line.  相似文献   

15.
ABSTRACT: BACKGROUND: Arnica montana L. and Artemisia absinthium L. (Asteraceae) are medicinal plants native to temperate regions of Europe, including Romania, traditionally used for treatment of skin wounds, bruises and contusions. In the present study, A. montana and A. absinthium ethanolic extracts were evaluated for their chemical composition, antioxidant activity and protective effect against H2O2-induced oxidative stress in a mouse fibroblast-like NCTC cell line. RESULTS: A. absinthium extract showed a higher antioxidant capacity than A. montana extract as Trolox equivalent antioxidant capacity, Oxygen radical absorbance capacity and 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity, in correlation with its flavonoids and phenolic acids content. Both plant extracts had significant effects on the growth of NCTC cells in the range of 10--100 mg/L A. montana and 10--500 mg/L A. absinthium. They also protected fibroblast cells against hydrogen peroxide-induced oxidative damage, at the same doses. The best protection was observed in cell pre-treatment with 10 mg/L A. montana and 10--300 mg/L A. absinthium, respectively, as determined by Neutral red and lactate dehydrogenase assays. In addition, cell pre-treatment with plant extracts, at these concentrations, prevented morphological changes induced by hydrogen peroxide. Flow-cytometry analysis showed that pre-treatment with A. montana and A. absinthium extracts restored the proportion of cells in each phase of the cell cycle. CONCLUSIONS: A. montana and A. absinthium extracts, rich in flavonoids and phenolic acids, showed a good antioxidant activity and cytoprotective effect against oxidative damage in fibroblast-like cells. These results provide scientific support for the traditional use of A. montana and A. absinthium in treatment of skin disorders.  相似文献   

16.
Recent evidence supports a neuroprotective role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) against ischemic brain injury. However, the molecular mechanisms of SHP-2 activation and those governing how SHP-2 exerts its function under oxidative stress conditions are not well understood. Recently we have reported that reactive oxygen species (ROS)-mediated oxidative stress promotes the phosphorylation of endogenous SHP-2 through lipid rafts, and that this phosphorylation strongly occurs in astrocytes, but not in microglia. To investigate the molecules involved in events leading to phosphorylation of SHP-2, raft proteins were analyzed using astrocytes and microglia. Interestingly, caveolin-1 and -2 were detected only in astrocytes but not in microglia, whereas flotillin-1 was expressed in both cell types. To examine whether the H2O2-dependent phosphorylation of SHP-2 is mediated by caveolin-1, we used specific small interfering RNA (siRNA) to downregulate caveolin- 1 expression. In the presence of caveolin-1 siRNA, the level of SHP-2 phosphorylation induced by H2O2 was significantly decreased, compared with in the presence of control siRNA. Overexpression of caveolin- 1 effectively increased H2O2-induced SHP-2 phosphorylation in microglia. Lastly, H2O2 induced extracellular signal-regulated kinase (ERK) activation in astrocytes through caveolin-1. Our results suggest that caveolin-1 is involved in astrocyte-specific intracellular responses linked to the SHP-2-mediated signaling cascade following ROS-induced oxidative stress.  相似文献   

17.
The dose-dependent cytotoxicity effect on human hepatocyte(HL-7702 cells) induced by “naked” Fe3O4 nanoparticles was assessed through cell viabilities and lactate dehydrogenase(LDH) activities. Three important oxidative indexes of the cells by glutathione peroxidase(GSH-Px), superoxide dismutase(SOD) and malondialdehyde( MDA) were determined. The good correlation of the cell viabilities with their GSH-Px, SOD and MDA levels indicated that the cytotoxicity is related to activation of oxidative stress induced by Fe3O4 nanoparticles. The oxidative stress also leads to corresponding DNA damage in a similar dose-dependent manner, followed by the changes of cell cycle and cell apoptosis. Such work provides important experimental data for the safety evaluation of superparamagnetic Fe3O4 nanoparticles.  相似文献   

18.
Radiation therapy has been used in the treatment of a wide variety of cancers for nearly a century and is one of the most effective ways to treat cancer. Low-dose ionizing radiation (IR) can interfere with cell division of cancer and normal cells by introducing oxidative stress and injury to DNA. The differences in the response to IR-induced DNA damage and increased reactive oxygen species between normal human fibroblasts (NHFs) and cancerous SHSY-5Y cells were considered. H2AX staining and comet assays revealed that NHF cells responded by initiating a DNA repair sequence whereas SHSY-5Y cells did not. In addition, NHF cells appeared to quench the oxidative stress induced by IR, and after 24 h no DNA damage was present. SHSY-5Y cells, however, did not repair their DNA, did not quench the oxidative stress, and showed characteristic signs that they were beginning to undergo apoptosis. These results indicate that there is a differential response between this cancerous and normal cell line in their ability to respond to low-dose IR, and these differences need to be exploited in order to treat cancer effectively. Further study is needed in order to elucidate the mechanism by which SHSY-5Y cells undergo apoptosis following radiation and why these normal cells are better equipped to deal with IR-induced double-strand breaks and oxidative stress.  相似文献   

19.
Potential antioxidant properties of an aqueous extract of the edible red seaweed Gracilaria tenuistipitata (AEGT) against oxidative DNA damage were evaluated. The AEGT revealed several antioxidant molecules, including phenolics, flavonoids and ascorbic acid. In a cell-free assay, the extract exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity that significantly reduced H?O?-induced plasmid DNA breaks in a dose-response manner (P < 0.001). The AEGT also suppressed H?O?-induced oxidative DNA damage in H1299 cells by reducing the percentage of damaged DNA in a dose-response manner (P < 0.001) as measured by a modified alkaline comet-nuclear extract (comet-NE) assay. The MTT assay results showed that AEGT confers significant protection against H?O?-induced cytotoxicity and that AEGT itself is not cytotoxic (P < 0.001). Moreover, H?O?-induced cell cycle G2/M arrest was significantly released when cells were co-treated with different concentrations of AEGT (P < 0.001). Taken together, these findings suggest that edible red algae Gracilaria water extract can prevent H?O?-induced oxidative DNA damage and its related cellular responses.  相似文献   

20.
Phytochemicals have shown promise in inhibiting UV-induced oxidative stress, and therefore are considered as potent inhibitors of UV-induced oxidative stress-mediated skin diseases. We have shown previously that topical treatment of silymarin, a flavonoid from milk thistle (Silybum marianum), inhibits UV-induced oxidative stress in mouse skin. However, the cellular targets responsible for the inhibition of UV-induced oxidative stress by silymarin are not clearly defined. To address this issue, C3H/HeN mice were UV irradiated (90 mJ cm(-2)) with or without topical treatment with silymarin (1 mg cm(-2) skin area). Mice were killed 48 h later and skin samples collected. Flow cytometric analysis of viable dermal cells revealed that the number of infiltrating CD11b+ cells were the major source of oxidative stress (31.8%) in UV-irradiated skin compared with non-UV-exposed skin (0.4%). Treatment of silymarin inhibited UV-induced oxidative stress through inhibition of infiltrating CD11b+ cells. The analysis of myeloperoxidase also indicated that silymarin significantly (P < 0.001) decreased UV-induced infiltration of leukocytes, and this effect of silymarin was similar to that of intraperitoneal treatment of mice with monoclonal antibodies to CD11b. The inhibitory effect of silymarin, regardless of whether it is topically treated before or after UV irradiation, was of similar magnitude. Intraperitoneal administration of monoclonal antibodies to CD11b (rat IgG2b) to C3H/HeN mice inhibited UVB-induced oxidative stress generated by both epidermal and dermal cells as is evident by relative fluorescence intensity of oxidized rhodamine. Similar to the effect of anti-CD11b, silymarin also inhibited UV-induced oxidative stress in both epidermal and dermal cells. Further, CD11b+ and CD11b- cell subsets from UV-treated or silymarin+UV-treated mice were separated by immunomagnetic cell isolation technique from total epidermal and dermal single cell suspensions and analyzed for reactive oxygen species (ROS)/H2O2 production. Analytic data revealed that CD11b+ cell population from UV-irradiated skin resulted in significantly higher production of ROS in both epidermis and dermis than CD11b- cell population, and that silymarin inhibited UV-induced oxidative stress through targeting infiltrating the CD11b+ cell type in the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号