首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anti-cancer differentiation therapy could be one strategy to stop cancer cell proliferation. We propose a new sedimentation field flow fractionation (SdFFF) cell separation application in the field of cancer research. It concerns the study of megakaryocytic differentiation processes after a short exposure to an inducting agent (diosgenin). Washout process and early dual SdFFF separation--removing the influence of diosgenin and decreasing the influence of undifferentiated cells--resulted in the preparation of an enriched population to study the mechanism and kinetics of megakaryocytic differentiation. A short exposure to diosgenin was able to induce complete differentiation leading to maximal maturation which ended naturally after 192h incubation without the influence of a secondary effect of diosgenin. The study of isolated undifferentiated cells also showed that no resistance to diosgenin was observed. This result suggested different sensitivities to differentiation induction, and SdFFF cell separation would be of great interest to explore this phenomena.  相似文献   

2.
Classically described as a macroscale size-density based method, Sedimentation field flow fractionation (SdFFF) has been successfully used for cell sorting. The goal of this study was to develop a new SdFFF device for downscale applications, in particular for oncology research to rapidly monitor chemical biological event induction in a cell line. The development of a downscale SdFFF device required reduction of the separation channel volume. Taking advantage of a newly laboratory designed apparatus, channel volume was successfully decreased by reducing both length and breadth. To validate the apparatus and method, we used the well-known model of diosgenin dose-dependent induction of apoptosis or megakaryocytic differentiation in HEL cells. After a minute scale acquisition of a reference profile, the downscale device was able to perform fast, early, significant and reproducible monitoring of apoptosis and differentiation, two important biological mechanisms in the field of cancer research.  相似文献   

3.
Differentiation therapy could be one strategy for stopping cancer cell proliferation. A plant steroid, diosgenin, is known to induce megakaryocytic differentiation in human erythroleukemia (HEL) cells. In recent studies, the use of sedimentation field-flow fractionation (SdFFF) allowed the preparation of subpopulations that may differ in regard to sensitivity to differentiation induction. The specific goal of this study was to determine the relationship between cell cycle stage and sensitivity to megakaryocytic differentiation induction of HEL cells. After first confirming the capacity of diosgenin to specifically select targets, hyperlayer SdFFF cell sorting was used to prepare fractions according to cell cycle position from crude HEL cells. The sensitivities of these fractions to diosgenin-induced differentiation were then tested. The coupling of SdFFF cell separation to imaging flow cytometry showed that G1-phase cells were more sensitive to differentiation induction than S/G2M-phase cells, confirming the relationship between cell status at the start of induction, the extent of the biological event, and the potential of SdFFF in cancer research.  相似文献   

4.
Whereas previous studies have indicated that DNA damage as a result of 8-methoxypsoralen (8-MOP) and UVA treatment leads to cell death, this study establishes the minimum concentrations of 8-MOP and UVA necessary to induce apoptosis in human T-lymphocytic and mono-cytic cell lines. In order to assess apoptosis, we used fluorescent microscopy to examine changes in light scattering as well as internucleosomal DNA fragmentation. Generation of a dose response curve showed that the minimum combination of UVA and 8-MOP that was necessary to induce greater than background levels of apoptosis within 24 h of treatment was 0.5 J/cm2 UVA and 12.5 ng/mL of 8-MOP. A striking observation was that UVA alone at doses 1.0 J/cm2, but not 8-MOP alone (6300 ng/mL), induced significant apoptosis in the Sup-T1 cell line within 24 h. Although the percentage of apoptotic Sup-T1 cells induced by UVA alone was not as great as that of 8-MOP and UVA in combination, a highly significant correlation between the product of the concentration of 8-MOP (ng/mL) times the dose of UVA (J/ cm2) and the percentage of apoptotic cells was observed. This correlation provides an important tool for studying the relationship of UVA-induced DNA damage to apoptosis induction. Moreover, it will provide a means by which early events in the apoptotic pathway can be dissected.  相似文献   

5.
Apoptosis is an important process for maintaining tissue homeostasis and eliminating abnormal cells in multicellular organisms. Abnormality in apoptosis often leads to severe diseases such as cancers. Better understanding of its mechanisms and processes is therefore important. Accompanying molecular biology events of apoptosis is a series of cellular morphology changes: nucleus condensation, cell shrinkage and rounding, cell surface blebbing, dynamic blebbing, apoptotic membrane protrusions and nucleus fragmentations and finally, the formation and release of apoptotic bodies. It is difficult to detect cellular changes in the early phase of apoptosis due to the subtle changes at this phase. In the current study, we induced apoptosis in HeLa cells with H2O2 and used nuclear dye Hoechst 33258, mitochondria, lysosome and cytoplasmic protein specific aggregation-induced emission fluorogens (AIEgens), TPE-Ph-In, 2M-DABS and BSPOTPE to successfully perform live cell multiplexed imaging to investigate early apoptosis cellular events. We showed the gradual dissipation of mitochondria membrane potential until it is nondetectable by TPE-Ph-In. Increased mitophagy detected by TPE-Ph-In and 2M-DABS, condensed nucleus detected by Hoechst 33258, increased permeability and/or reduced integrity of nuclear membrane, and increased intracellular vesicles detected by 2M-DABS are some of the early events of apoptosis.  相似文献   

6.
Natural killer cells (NK cells) are important immune cells which have attracted increasing attention in cancer immunotherapy. Due to the heterogeneity of cells, individual cancer cells show different resistance to NK cytotoxicity, which has been revealed by flow cytometry. Here we used label-free mass cytometry (CyESI-MS) as a new tool to analyze the metabolites in Human Hepatocellular Carcinoma (HepG2) cells at the single-cell level after the interaction with different numbers of NK92 MI cells. A large amount of chemical information from individual HepG2 cells was obtained showing the process of cell apoptosis induced by NK cells. Nineteen metabolites which consecutively change during cell apoptosis were revealed by calculating their average relative intensity. Four metabolic pathways were impacted during cell apoptosis which hit 4 metabolites including glutathione (GSH), creatine, glutamic acid and taurine. We found that the HepG2 cells could be divided into two phenotypes after co-culturing with NK cells according to the bimodal distribution of concentration of these 4 metabolites. The correlation between metabolites and different apoptotic pathways in the early apoptosis cell group was established by the 4 metabolites at the single-cell level. This is a new idea of using single-cell specific metabolites to reveal the metabolic heterogeneity in cell apoptosis which would be a powerful means for evaluating the cytotoxicity of NK cells.

Label-free mass cytometry is utilized to study the dynamic metabolic change during apoptosis in HepG2 cells induced by NK92 MI cells at the single-cell level. The metabolic heterogeneity of individual HepG2 cells during apoptosis was revealed.  相似文献   

7.
Sedimentation field flow fractionation monitoring of rice starch amylolysis   总被引:6,自引:0,他引:6  
Enzymatic starch granule hydrolysis is one of the most important reactions in many industrial processes. In this work, we investigated the capacity of SdFFF to monitor the native rice starch amylolysis. In order to determine if fractogram changes observed were correlated to granule biophysical modifications which occurred during amylolysis, SdFFF separation was associated with particle size distribution analysis. The results showed that SdFFF is an effective tool to monitor amylolysis of native rice starch. SdFFF analysis was a rapid (less than 10 min), simple and specific method to follow biophysical modifications of starch granules. These results suggested many different applications such as testing series of enzymes and starches. By using sub-population sorting, SdFFF could be also used to better understand starch hydrolysis mechanisms or starch granule structure.  相似文献   

8.
Numerous types of cells have been shown to undergo apoptosis when exposed to oxidant agent such as hydrogen peroxide. In order to understand the functional relationship between the anti- and pro-apoptotic regulatory proteins in the cells under oxidant stress, we have studied the level of expression of apoptosis regulatory proteins, bcl-2 and bax, in human leukemia HL-60 cells. The exposure of HL-60 cells to different concentrations of H2O2 for 6 h resulted in a typical apoptosis of the cells as characterized by flow cytometry, cell cycle analysis, and DNA fragmantation. There was a block in G1 to S transition and apoptotic cells were mainly derived from S and G2 cells. Kinetic study demonstrated that the levels of both bcl-2-mRNA and -protein expression were decreased with the progression of cellular apoptosis whereas the level of bax-mRNA was unchanged but the expressed bax-protein was not detectable. Cycloheximide, a nonspecific translation inhibitor, did not prevent the hydrogen peroxide-mediated apoptosis in HL-60 cells. These results suggest that the regulation of bcl-2, but not of bax are important factor in the oxidative stress-induced apoptosis in HL-60 cells.  相似文献   

9.
Proton beam is useful to target tumor tissue sparing normal cells by allowing precise dose only into tumor cells. However, the cellular and molecular mechanisms by which proton beam induces tumor cell death are still undefined. We irradiated three different tumor cells (LLC, HepG2, and Molt-4) with low energy proton beam (35 MeV) with spread out Bragg peak (SOBP) in vitro, and investigated cell death by MTT or CCK-8 assay at 24 h after irradiation. LLC and HepG2 cells were sensitive to proton beam at over 10 Gy to induce apoptosis whereas Molt-4 showed rather low sensitivity. Relative biological effectiveness (RBE) values for the death rate relative to gamma-ray were ranged from 1.1 to 2.3 in LLC and HepG2 but from 0.3 to 0.7 in Molt-4 at 11 d after irradiation by colony formation assay. The typical apoptotic nuclear DNA morphological pattern was observed by staining with 4'-6-diamidino-2-phenylindole (DAPI). Tiny fragmented DNA was observed in HepG2 but not in Molt-4 by the treatment of proton in apoptotic DNA fragment assay. By FACS analysis after stained with FITC-Annexin-V, early as well as median apoptotic fractions were clearly increased by proton treatment. Proton beam-irradiated tumor cells induced a cleavage of poly (ADP-ribose) polymerase-1 (PARP-1) and procaspases-3 and -9. Activity of caspases was highly enhanced after proton beam irradiation. Reactive oxygen species (ROS) were significantly increased and N-acetyl cysteine pretreatment restored the apoptotic cell death induced by proton beam. Furthermore, p38 and JNK but not ERK were activated by proton and dominant negative mutants of p38 and JNK revived proton-induced apoptosis, suggesting that p38 and JNK pathway may be activated through ROS to activate apoptosis. In conclusion, our data clearly showed that single treatment of low energy proton beam with SOBP increased ROS and induced cell death of solid tumor cells (LLC and HepG2) in an apoptotic cell death program by the induction of caspases activities.  相似文献   

10.
Liu B  Liu F  Chen C  Gao H 《Natural product research》2010,24(20):1927-1932
In this study, supercritical carbon dioxide extraction of ethyl p-methoxycinnamate from Kaempferia galanga L. rhizome and its apoptotic induction in human HepG2 cells are reported for the first time. By using supercritical carbon dioxide extraction, the yield of ethyl p-methoxycinnamate identified by gas chromatography mass spectrometry (GC-MS) was as high as 2.5% with respect to the raw materials. In the anticancer assay, it was found that ethyl p-methoxycinnamate could inhibit the proliferation of the human hepatocellular liver carcinoma HepG2 cell line in a dose-dependent manner and induce the significant increase of the subG0 cell population. After treatment with ethyl p-methoxycinnamate, phosphatidylserine of HepG2 cells could significantly translocate to the surface of the membrane. The increase of an early apoptotic population was observed by both annexin-fluorescein isothiocyanate (FITC) and propidium iodide (PI) staining. It was concluded that ethyl p-methoxycinnamate not only induced cells to enter into apoptosis, but also affected the progress of the cell cycle.  相似文献   

11.
为研究硒化壳聚糖对NB4细胞的凋亡及周期阻断作用,用流式细胞法观察了药物对细胞的诱导凋亡及周期阻断作用。结果表明,硒化壳聚糖作用NB4细胞24 h,可剂量依赖性地诱导细胞凋亡并使G0—G1期细胞增多。提示硒化壳聚糖可诱导细胞凋亡,并对NB4细胞周期有特异性阻断作用。  相似文献   

12.
He Z  Tian Y  Zhang X  Bing B  Zhang L  Wang H  Zhao W 《Natural product research》2012,26(23):2243-2246
Diosgenin is a naturally occurring steroidal saponin abundantly present in many medical plants. In this study, diosgenin could significantly inhibit the growth of sarcoma-180 tumour cells in?vivo, and remarkably increase thymus and spleen weights of S-180-bearing mice and upgrade the secretion level of TNF-α in serum. Moreover, diosgenin could stimulate lymphocyte transformation and enhance phagocytic capability of macrophages in?vitro, and remarkably promoted the secretion of NO and TNF-α in macrophages. These results suggested that diosgenin could improve both specific and non-specific cellular immune responses, and the anti-tumour effects of diosgenin were achieved by immunostimulating properties instead of direct cytotoxicity.  相似文献   

13.
We have observed that exposure of U937 cells, pre-incubated for 18 h with 0.2 μM hypericin, to 599 nm laser radiation with a fluence of 2.5 J/cm2 renders them insensitive to higher light doses. In fact, pre-sensitized cells appear to be fully resistant to light doses that normally determine massive cellular apoptosis in experimental photo-dynamic therapy. The appearance of the photo-resistance, as measured by evaluating the changes in levels of expression of pro and anti apoptotic proteins, PARP fragmentation and cell viability is exclusively observed with exposure to light doses not exceeding 5–6 J/cm2. Above this energy, necrosis replaces apoptosis upon photo-stimulation of U937 cells. Here, we describe the appearance of photo-resistance in hypericin-loaded U937 cells, but could not fully unravel the molecular mechanism underlying this process. However, the observed stimulation of the expression of the HSP-70 protein upon photo-induced stress may suggest its involvement in this process.  相似文献   

14.
We have monitored and imaged cell death induced in human leukemic U937 cells over time using three-color confocal imaging. Three different apoptotic inducers, anti-Fas, TNF-alpha and Etoposide were used. Individual cascaded events such as loss of mitochondrial transmembrane potential, exposure of phosphatidyl-serine, membrane blebbing and permeabilization of the cell membrane have been observed in real time with different individual cells. From the results, an interesting heterogeneicity in the apoptotic phenotype has been observed. The CRISC method is easy to use and provides biologist with a powerful additional tool to study in real-time processes of several hours of duration such as apoptosis. We predict that the period of cell viability obtained after protein coating of the PDMS devices (>80 h) will also allow monitoring of other biological processes of longer duration or long onset time, such as mitosis, phagocytosis and differentiation.  相似文献   

15.
Photodynamic therapy (PDT) may trigger apoptosis or necrosis in cancer cells. Several steps in the induction and execution of apoptosis require high amounts of adenosine-5'-triphosphate (ATP). Because the mitochondrial membrane potential (delta psi) decreases early in apoptosis, we raised the question about the mechanisms of maintaining a sufficiently high ATP level. We therefore monitored delta psi and the intracellular ATP level of apoptotic human epidermoid carcinoma cells (A431) after photodynamic treatment with aluminum (III) phthalocyanine tetrasulfonate. A maximum of caspase-3-like activity and nuclear fragmentation was found at fluences of about 4 J cm(-2). Under these conditions apoptotic cells reduced delta psi rapidly, while the ATP level remained high for 4-6 h after treatment for cells supplied with glucose. To analyze the contribution of glycolysis to the energy supply during apoptosis, experiments were carried out with cells deprived of glucose. These cells showed a rapid drop of ATP content and neither caspase activation nor nuclear fragmentation could be detected. We conclude that the use of glucose as a source of ATP is obligatory for the execution of PDT-induced apoptosis.  相似文献   

16.
The aim of this study was to investigate the cytotoxic and apoptotic effects of Nephelium ramboutan-ake (pulasan) rind in selected human cancer cell lines. The crude ethanol extract and fractions (ethyl acetate and aqueous) of N. ramboutan-ake inhibited the growth of HT-29, HCT-116, MDA-MB-231, Ca Ski cells according to MTT assays. The N. ramboutan-ake aqueous fraction (NRAF) was found to exert the greatest cytotoxic effect against HT-29 in a dose-dependent manner. Evidence of apoptotic cell death was revealed by features such as chromatin condensation, nuclear fragmentation and apoptotic body formation. The result from a TUNEL assay strongly suggested that NRAF brings about DNA fragmentation in HT-29 cells. Phosphatidylserine (PS) externalization on the outer leaflet of plasma membranes was detected with annexin V-FITC/PI binding, confirming the early stage of apoptosis. The mitochondrial permeability transition is an important step in the induction of cellular apoptosis, and the results clearly suggested that NRAF led to collapse of mitochondrial transmembrane potential in HT-29 cells. This attenuation of mitochondrial membrane potential (Δψm) was accompanied by increased production of ROS and depletion of GSH, an increase of Bax protein expression, and induced-activation of caspase-3/7 and caspase-9. These combined results suggest that NRAF induces mitochondrial-mediated apoptosis.  相似文献   

17.
We reported earlier that expression of Sox-4 was found to be elevated during prostaglandin (PG) A(2) and delta(12)-PGJ(2) induced apoptosis in human hepatocarcinoma Hep3B cells. In this study, the role of Sox-4 was examined using human Hep3B and HepG2 cell lines. Sox-4 induction by several apoptotic inducer such as A23187 (Ca(2+) ionophore) and etoposide (topoisomerase II inhibitor) and Sox-4 transfection into the cells were able to induce apoptosis as observed by the cellular DNA fragmentation. Antisense oligonucleotide of Sox-4 inhibited the induction of Sox-4 expression and blocked the formation of DNA fragmentation by PGA(2) and delta(12)-PGJ(2) in Hep3B and HepG2 cells. Sox-4-induced apoptosis was accompanied with caspase-1 activation indicating that caspase cascade was involved in this apoptotic pathway. These results indicate that Sox-4 is involved in Hep3B and HepG2 cells apoptosis as an important apoptotic mediator.  相似文献   

18.
Recently colorectal cancer rates have increased rapidly in Taiwan. The treatment of colorectal cancer includes surgery, radiation therapy and chemotherapy. Mangosteen (Garcinia mangostana) is a famous Asian tropical fruit. γ-Mangostin is a xanthone derivative isolated from the fruit hull. In previous studies, we found evidence of anti-inflammatory and anti-brain tumor activities in γ-mangostin. In this study, we performed further studies to assess the apoptotic effects of γ-mangostin on colorectal adenocarcinoma cells HT29. γ-Mangostin showed concentration and time-dependent cytotoxic effects on HT29 cells. Microscopic observation under Giemsa staining showed that γ-mangostin induced cellular swelling and the appearance of apoptotic bodies, characteristic of apoptosis in HT29 cells. In addition, flow cytometry analysis showed an increase of hypodiploid cells in γ-mangostin-treated HT29 cells, while enhancement of intracellular peroxide production was detected in the same γ-mangostin-treated cells by DCHDA assay and DiOC6(3) staining. In view of the above results, γ-mangostin has demonstrated anticancer activity and induces apoptosis in HT29 colorectal adenocarcinoma cells. The evidence suggests that γ-mangostin could serve as a micronutrient for colon cancer prevention and is a potential lead compound for the development of anti-colon cancer agents.  相似文献   

19.
Recent observations indicate that the resistance of apoptosis is an important process of tumor metastasis and metastases are the cause of 90% of human cancer death. Etoposide, a semisynthetic derivative of the podophyllotoxins, is a clinically used anti-cancer reagent, but the effects of it on metastatic gastric carcinoma cells are totally unknown. In this study, etoposide induced apoptotic cell death in human gastric adenocarcinoma cell line SGC-7901, derived from metastatic lymph nodes, as evidenced by the analysis of DNA fragmentation, apoptotic body formation, caspase activation, and apoptosis specific changes in cell morphology is demonstrated. The depolarization of mitochondrial membrane and the release of cytochrome c were most early events in etoposide treated SGC-7901 cells, and were followed by caspase-3 activation and PARP cleavage. Caspase-8 activation was not detected under the same condition. Thus, it was proposed that etoposide induces caspase-associated apoptotic cell death in human metastatic gastric carcinoma, which is initiated by mitochondrial cytochrome c release.  相似文献   

20.
The temporal dynamics of Fas-induced apoptosis is elucidated. Jurkat cells are captured on the affinity surface of a microdevice coated with anti-CD95, an antibody known to induce apoptosis in cells via the extrinsic (caspase 8) pathway. The timing of apoptosis induction is controlled by the binding of the cells to the surface. Once bound, the cells are continuously stained with the caspase probe, l-bisaspartic acid rhodamine 110 (D2R), and the fluorescence of the cells was monitored for 6 h by light microscopy. This approach normalizes the temporal dynamics for each cell, as the binding event is also the start of apoptosis. In addition to providing the number of apoptotic cells over time, the fluorescence of individual cells can be monitored, providing information about the timing of caspase activity in each cell. The rate of caspase cleavage of D2R in each cell is also measured and shows good agreement between the cells in a given population. The effects of the caspase inhibitor, z-VAD-FMK, on the timing of caspase activity are also investigated and are shown to dramatically slow the apoptotic process. In the future, other caspase probes could be used to provide additional information about the temporal dynamics of caspase activation. Additional techniques, such as fluorescence correlation spectroscopy, can be coupled to these methods to provide faster temporal response and help to elucidate the heterogeneity of the apoptosis process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号