首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim of improving the efficiency of laser drilling, an upward drilling method is proposed. In the experiment, a long pulsed laser beam was arranged to propagate upwards, in the opposite direction to gravity, and was used to drill hole at the bottom of an aluminum slab. A semi-infinite axisymmetric model of this system was also established. The analytical solution for the hole shape was derived by assuming that material, once it melted, was removed from hole with the aid of gravity. The calculation results agreed well with the experimental results. For further verification of the effects of gravity, the removed molten material and the hole shape for the downward (along the gravity direction) and the upward drilling cases were compared experimentally. In addition, the relationships between gravity, the inertia force, the surface tension and the viscosity were discussed. The results show that more molten material is expelled with the assistance of the gravity, and the laser energy is used more efficiently to melt the aluminum slab in the upward drilling.  相似文献   

2.
This paper presents an investigation into the dynamics of repetitive pulsed laser drilling of a visually transparent media using a CO2 laser source. This enabled the use of a high-speed imaging system for observing, in real time, the behaviour of the drilling process in the laser drilled cavity of 1.5 mm diameter holes of up to 18.5 mm in depth. The work revealed that the instantaneous drilling velocity within each laser pulse can vary considerably from the average drilling velocity as a result of the non-uniform temporal pulse shape and the oscillation of the melt ejection rate. During beam breakthrough, both upward and downward melt ejections were observed to occur inside the drilled hole for a short period of time, after which the material was ejected through the exit end of the holes. It has been shown in this work that the downward melt flow velocity increases with hole depth for a positively tapered hole (from 0.09 to 1.43 m/s) and decreases with hole depth for a negatively tapered hole geometry (from 0.4 to 0.1 m/s), as a result of the change in the assist gas velocity inside the drilled hole with respect to the hole taper geometry. The mechanisms of forming the positively and negatively tapered holes in the transparent media have been correlated with the hole geometry and melt flow velocity. The work has demonstrated a new method of studying the melt dynamics in laser drilling.  相似文献   

3.
The boiling front induced by a pulsed Nd:YAG-laser at very slow translation speed was studied. The purpose is to understand fundamental melt movement mechanisms. The melt was observed by high speed imaging, with and without illumination. When switching on the laser beam a hole is drilled through a bulk of melt. The hole expands and the boiling pressure gradually opens the melt bridge, instead developing an interaction front similar to cutting. These conditions remain in quasi-steady state during the pulse. The ablation pressure from boiling shears waves down the front and keeps the melt downwards in a stable position. When switching off, the waves smoothen and in absence of boiling the surface tension drags the melt back upwards, to semi-torus-like Catenoid shape. Evidence on the large melt pool and its shape was achieved by three-dimensional reconstruction from cross section macrographs. The basic findings how melt can move with and without ablation pressure can enable controlled melt dynamics for various laser processing techniques, like remote cutting, ablation, keyhole welding or drilling.  相似文献   

4.
苏拾  安志勇  梁伟  丛景彬  樊帆 《光子学报》2012,41(5):565-570
为了获得高质量小孔,克服单脉冲激光打孔的不足,设计了一种能够产生多脉冲激光波形的激光器电源.并在1mm厚的薄钢片上得到直径小于1mm的小孔.多脉冲打孔理论分析表明,多脉冲激光打孔不但减少了熔融物和等离子体的产生,而且降低了激光打孔对高能量的要求,获得的小孔质量优于单脉冲激光打孔.另外脉冲宽度和脉冲间距的选择对激光小孔加工质量起决定性作用,在加工高质量孔的时候,应该选用较短的激光脉冲宽度.实验表明,利用三脉冲激光输出波形打孔所获得的小孔质量要优于单脉冲激光打孔效果,有效脉冲平均能量为350mJ,宽度为100μs,脉冲间距为100μs.  相似文献   

5.
The temporal pulse train modulation during laser percussion drilling was found to effect significant changes to the material ejection processes. In particular, distinct differences in the material ejection processes have been observed between a temporal pulse train shaping technique termed as sequential pulse delivery pattern control (SPDPC) and the normal delivery pattern (NDP), wherein the parameters of successive laser pulses were constant. Due to the reduced upward material removal fractions in SPDPC drilling, the spatter deposition area was reduced from approximately 6.7 to 2.7 mm2. In addition, the melt layer thicknesses at the hole bottom were significantly increased from 11–61 to 18–369 μm. Such changes were identified as being due to the low laser pulse intensities before beam breakthrough associated with the SPDPC method. It was observed that the use of the linearly increasing SPDPC method increased the downward material removal fractions, from 20% to 28% observed in NDP drilling, to 34%–39%. Such an increase in the downward material ejection mechanism in SPDPC drilling was identified as being primarily due to the pointed blind-hole profile generated before the onset of beam breakthrough. The work has shown that modulating the entire pulse train in laser percussion drilling could control the material ejection processes. Furthermore, the fundamental elements of the SPDPC technique are given in terms of the rate of energy deposition and total pulse train energy.  相似文献   

6.
In this work, the two main factors that influence the repeatability of the laser percussion drilling process are identified. Experimental parametric analysis was carried out to correlate the laser parameters with the repeatability of a laser percussion drilling process. The experiment was conducted using a flash lamp pumped Nd:YAG laser to drill 2 mm thick mild steel sheets. The relationship between the percentage standard deviation (PSD) of entrance hole diameter, hole circularity and the operating parameters is established. Thirty-five holes were drilled and analysed for each set of identical laser parameters. The PSD of entrance hole diameter ranges between 1.47% and 4.78% for an operating window of 3.5–7 kW peak power, and 1–3 ms pulse width. The circularity of the entrance hole (defined as the ratio between the minimum and maximum diameters of the hole) ranges from 0.94 to 0.87, and is found to correlate with repeatability. The work shows that higher peak power, and shorter pulse width gives better hole geometry repeatability. The effect of melt ejection on hole geometry repeatability is also investigated. Melt ejection and spatter formation have been found to contribute to the poor repeatability of the process.  相似文献   

7.
After the development of a novel XeCl excimer laser with a nearly diffraction-limited beam and 175 ns pulse length, research was done on different industrial applications of this laser. Hole drilling, one of these applications, was studied extensively. A better understanding of the drilling process is necessary to optimise the drilling efficiency and to control the quality of the holes. A shadowgraphic imaging technique was used for studying the removal of material from the hole and the absorption of the laser beam by this removed material. Images were made at successive times both during and after the laser pulse.In drilling of thin foils, it was shown that the material was ejected mainly after the laser pulse. A comparison of different materials showed that the drilling process should be optimised for each material independently. Furthermore, the plume was found to be not fully transparent for processing materials with a strong absorption line at or near the laser wavelength. The correlation between material and drilling speed suggests improved energy transfer and improved melt ejection for the materials with this absorption. PACS 42.62.Cf; 52.38.Dx; 52.38.Mf  相似文献   

8.
刘丹  孔德新  苗在强  张昕 《强激光与粒子束》2018,30(6):069001-1-069001-8
为了描述纳秒激光对钛合金打孔过程中孔的形貌及温度场的变化规律,建立激光打孔的物理模型,利用ANSYS中APDL语言进行编程,对温度场进行仿真分析,并利用单元生死技术模拟孔形貌的变化过程。从有限元数值模拟和实验两方面综合分析比较了激光工艺参数(脉冲能量和脉冲数量)对打孔质量(孔深和孔径)的影响,系统论述了钛合金纳秒激光打孔的一般规律,以达到工艺参数优化,提高打孔质量的目的。  相似文献   

9.
A new method for improving the efficiency of laser drilling has been developed. Two synchronized free-running laser pulses from a tandem-head Nd:YAG laser are capable of drilling through 1/8-in-thick stainless-steel targets at a stand-off distance of 1 m without gas-assist. The combination of a high-energy laser pulse for melting with a properly tailored high-intensity laser pulse for liquid expulsion results in the efficient drilling of metal targets. We argue that the improvement in drilling is due to the recoil pressure generated by rapid evaporation of the molten material by the second laser pulse. Received: 29 August 2000 / Accepted: 18 December 2000 / Published online: 3 April 2001  相似文献   

10.
This paper introduces a 3-D transient finite element model of laser cladding by powder injection to investigate the effects of laser pulse shaping on the process. The proposed model can predict the clad geometry as a function of time and process parameters including laser pulse shaping, travel velocity, laser pulse energy, powder jet geometry, and material properties. In the proposed strategy, the interaction between powder and melt pool is assumed to be decoupled and as a result, the melt pool boundary is first obtained in the absence of powder spray. Once the melt pool boundary is obtained, it is assumed that a layer of coating material is deposited on the intersection of the melt pool and powder stream in the absence of the laser beam in which its thickness is calculated based on the powder feedrate and elapsed time. The new melt pool boundary is then calculated by thermal analysis of the deposited powder layer, substrate and laser heat flux. The process is simulated for different laser pulse frequencies and energies. The results are presented and compared with experimental data. The quality of clad bead for different parameter sets is experimentally evaluated and shown as a function of effective powder deposition density and effective energy density. The comparisons show excellent agreement between the modeling and experimental results for cases in which a high quality clad bead is expected.  相似文献   

11.
We report on the temporal evolution of the percussion drilling process in deep laser drilling. Ultrashort laser pulses at 1030 nm and a duration of 8 ps were used to machine silicon while simultaneously imaging the silhouette of the hole using an illumination wavelength above the band edge. We investigate the influence of the processing parameters fluence and pulse energy on the depth and shape of the hole demonstrating different phases of the drilling process. In the first phase, a tapered hole is formed with highly reproducible shape and depth. In the following, the evolution of the hole shape is irregular and imperfections like bulges, changes of the drilling direction and the formation of multiple hole ends occur. In the final phase, the maximum depth stays constant while the volume still increases due to enlargement of the hole diameter and the possible formation of multiple hole ends. Deviations from the ideal hole shape occur primarily in the lower part of the hole. Their extent can be reduced by increasing the amount of applied pulse energy. Moreover, the pulse energy is chiefly determining the maximum achievable hole depth, which is largely independent of the focusing conditions and corresponding fluence.  相似文献   

12.
Adiabatic inversion recovery radiofrequency (RF) pulse techniques are used to address B 1 inhomogeneity; however, the specific absorption rates of these techniques are significantly higher than that of non-adiabatic RF pulse techniques. In addition, time efficiency is poorer because of the required longer inversion recovery time. Therefore, an RF pulse train with three subpulses was previously developed and reported. The purpose of this article was to generalize the RF pulse train for tissues with different T 1 relaxation times and in a different application. The RF pulse train B 1 insensitivities and frequency responses were calculated with different T 1 relaxation times and different subpulse durations using the Bloch equation. The previously reported optimal flip angle (FA) combination was used. When using the optimal FA combination, the RF pulse train B 1 insensitivity did not change even if the T 1 relaxation times and the subpulse durations did change. In other words, the optimal FA combination does not require adjustments according to the T 1 and subpulse duration. The RF pulse train frequency responses with these subpulses can be dramatically improved even if the inherent subpulse frequency response is poor. This finding will facilitate RF pulse train technique implementation on magnetic resonance imaging scanners.  相似文献   

13.
Laser drilling is a common commercially developed technique for material processing. From the application viewpoint, it is the end product for a laser system, for instance a drilled hole, that matters. Laser pulse profile is the most important parameter controlling the laser hole drilling process. An efficient and practical method is therefore needed to develop a relationship between the pulse parameters and the depth of hole produced in a known material. In the present study, dimensionless groups are developed to optimize laser pulse parameters to give information on workpiece materials. Consequently, an optimal laser pulse for drilling an aluminum workpiece is predicted.  相似文献   

14.
In pulsed laser drilling, melt ejection greatly influences the keyhole shape and its quality as well, but its mechanism has not been well understood. In this paper, numerical simulation and experimental investigations based on 304 stainless steel and aluminum targets are performed to study the effects of material parameters on melt ejection. The numerical method is employed to predict the temperatures, velocity fields in the solid, liquid, and vapour front, and melt pool dynamics of targets as well. The experimental methods include the shadow-graphic technique, weight method, and optical microscope imaging, which are applied to real-time observations of melt ejection phenomena, measurements of collected melt and changes of target mass, observations of surface morphology and the cross-section of the keyhole, respectively. Numerical and experimental results show that the metallic material with high thermal diffusivity like aluminum is prone to have a thick liquid zone and a large quantity of melt ejection. Additionally, to the best of our knowledge, the liquid zone is used to illustrate the relations between melt ejection and material thermal diffusivity for the first time. The research result in this paper is useful for manufacturing optimization and quality control in laser-material interaction.  相似文献   

15.
Microscopic mechanisms and optimization of metal nanoparticle size distribution control using femtosecond laser pulse trains are studied by molecular dynamics simulations combined with the two-temperature model. Various pulse train designs, including subpulse numbers, separations, and energy distributions are compared, which demonstrate that the minimal mean nanoparticle sizes are achieved at the maximal subpulse numbers with uniform energy distributions. Femtosecond laser pulse trains significantly alter the film thermodynamical properties, adjust the film phase change mechanisms, and hence control the nanoparticle size distributions. As subpulse numbers and separations increase, alternation of film thermodynamical properties suppresses phase explosion, favors critical point phase separation, and significantly reduces mean nanoparticle size distributions. Correspondingly, the relative ratio of two phase change mechanisms causes two distinct nanoparticle size control regimes, where phase explosion leads to strong nanoparticle size control, and increasing ratio of critical point phase separation leads to gentle nanoparticles size control.  相似文献   

16.
方辉  薛桦  汤倩玉  张庆宇  潘诗琰  朱鸣芳 《物理学报》2019,68(4):48102-048102
本文采用耦合凝固和熔化效应的二维元胞自动机(cellular automaton, CA)模型,对温度梯度区域熔化(temperature gradient zone melting, TGZM)效应引起的熔池在固液两相区中的迁移现象进行模拟研究.模拟分析了抽拉速度、熔池初始位置、温度梯度和合金成分等因素对TGZM动力学的影响,并将模拟结果与解析模型的预测结果进行比较验证.通过模拟发现,在温度梯度作用下,熔池总是向着高温方向迁移;当抽拉速度低于或高于临界抽拉速度时,熔池朝向移动的液相线或固相线迁移;对于给定的抽拉速度,位于糊状区内临界位置以上的熔池会迁移进入液相,而位于临界位置以下的熔池会逐步靠近固相线.此外,温度梯度越高,合金成分越低,熔池的迁移速度越快.  相似文献   

17.
Peculiarities of the formation of melt hydrodynamics in the molten pool of electric arc as a result of a viscous interaction with the arc plasma flow and the effect of electromagnetic forces are considered. It is shown that in a relatively shallow pool, the role of viscous interaction with plasma flow predominates electromagnetic forces. In a deeper pool, the flow in peripheral upper region is formed as before by a viscous interaction between plasma and melt, and the electromagnetic forces dominate in deep regions.  相似文献   

18.
It is well known that ultrasonic cavitation causes a steady flow termed acoustic streaming. In the present study, the velocity of acoustic streaming in water and molten aluminum is measured. The method is based on the measurement of oscillation frequency of Karman vortices around a cylinder immersed into liquid. For the case of acoustic streaming in molten metal, such measurements were performed for the first time. Four types of experiments were conducted in the present study: (1) Particle Image Velocimetry (PIV) measurement in a water bath to measure the acoustic streaming velocity visually, (2) frequency measurement of Karman vortices generated around a cylinder in water, and (3) in aluminum melt, and (4) cavitation intensity measurements in molten aluminum. Based on the measurement results (1) and (2), the Strouhal number for acoustic streaming was determined. Then, using the same Strouhal number and measuring oscillation frequency of Karman vortices in aluminum melt, the acoustic streaming velocity was measured. The velocity of acoustic streaming was found to be independent of amplitude of sonotrode tip oscillation both in water and aluminum melt. This can be explained by the effect of acoustic shielding and liquid density.  相似文献   

19.
本文采用有限体积法对激光熔覆过程的温度场分布和熔体流动进行了数值模拟.基于CALPHAD相图法计算了基体和粉末的热物理性质,采用三维热源精确预测了凝固过程和温度分布,研究了Marangoni对流对熔池尺寸的影响.在熔池凝固过程中模拟所得出的温度梯度和凝固速度,预测了熔覆层凝固组织的演变趋势,相应的显微组织与实验结果吻合...  相似文献   

20.
This study investigates the effects of pulse energy distributions on subwavelength ripple structures (the ablation shapes and subwavelength ripples) using the plasma model with the consideration of laser particle–wave duality. In the case studies, the laser pulse (800 nm, 50 fs) trains consist of double pulses within a train with the energy ratios of 1:2, 1:1, and 2:1. Localized transient electron densities, material optical properties, and surface plasmon generation are strongly affected by the energy distributions. Hence, the adjustment of the ablation shape and subwavelength ripples can be achieved based on localized transient electron dynamics control during femtosecond laser pulse train processing of dielectrics. The simulation results show that better, more uniform structures, in terms of ablation shapes and subwavelength ripples, can be easily formed at a lower fluence or subpulse energy ratio of 1:1 with a fixed fluence. It is also found that pulse trains at a 1:1 energy ratio are preferred for drilling high-aspect-ratio microholes or microchannels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号