共查询到19条相似文献,搜索用时 46 毫秒
1.
基于SVM理论的一种新的数据分类方法 总被引:2,自引:0,他引:2
杨丽明 《数学的实践与认识》2003,33(12):61-65
基于 SVM分类器在模式识别问题中有独特的优势 ,本文通过对标准 SVM模型的改造 ,提出了一种新的简单的数据分类方法 .理论分析和实验表明 ,该方法与标准 SVM分类方法相比具有处理大规模数据识别的能力且保持较高的样本识别率 ,节省存储空间等优势 . 相似文献
2.
一种通用的基于梯度的SVM核参数选取算法 总被引:1,自引:0,他引:1
核函数的选取是SVM分类器选取的核心问题.核函数的自动选取既可以提高分类器的性能,又可以减少人为的干预.因此如何自动选取核函数已经成为SVM的热点问题,但是这个问题并没有获得很好的解决.近年来对核函数参数的自动选取的研究,特别是对基于梯度的优化算法的研究取得了一定的进展.提出了一种基于梯度的核函数选取的通用算法,并进行了实验. 相似文献
3.
针对混合核支持向量机(SVM)中的可调参数一般是根据经验或人工随机调试得到,不能确保参数最优的局限性,提出用粒子群和人工蜂群的并行混合优化(ABC-PSO)算法来优化混合核SVM参数,找出满足条件的最优参数组合.将该SVM模型应用到语音识别中,通过对三个不同语种的语音数据库的实验仿真,验证了混合算法优化SVM参数所得的优化SVM模型比PSO算法优化SVM所得的模型,具有良好的泛化能力和语音识别能力. 相似文献
4.
在支持向量机预测建模中,核函数用来将低维特征空间中的非线性问题映射为高维特征空间中的线性问题.核函数的特征对于支持向量机的学习和预测都有很重要的影响.考虑到两种典型核函数—全局核(多项式核函数)和局部核(RBF核函数)在拟合与泛化方面的特性,采用了一种基于混合核函数的支持向量机方法用于预测建模.为了评价不同核函数的建模效果、得到更好的预测性能,采用遗传算法自适应进化支持向量机模型的各项参数,并将其应用于装备费用预测的实际问题中.实际计算表明采用混合核函数的支持向量机较单一核函数时有更好的预测性能,可以作为一种有效的预测建模方法在装备管理中推广应用. 相似文献
5.
运用支持向量机对车牌字符进行识别,解决了由于图像受客观条件的影响、样本数量不是很大等原因导致的识别率不高的问题.主要针对车牌字符中的数字进行实验,选取了15组数字样本,8组进行训练,7组进行测试,采用交叉验证的思想对SVM进行参数C与g的寻优,并选择合适的核函数,对样本进行训练和预测,对于某些数字的识别率可达到100%,并在相同的训练集和测试集下与BP网络的识别效果进行对比.实验结果表明,SVM在训练样本较少且无字符特征提取的情况下具有很好的识别率,并且有很好的分类推广能力. 相似文献
6.
为提高支持向量机性能,提出一种支持向量机核函数的迭代改进新算法.利用与数据有关的保角映射,使核函数包含了全部学习样本的信息,即核函数具有数据依赖性.基本核函数的参数可取随机初值,通过对核函数进行多次迭代改进,直至得到满意的学习效果.与传统方法相比,新算法不需要筛选核函数的参数.对一元连续函数和强地震事件的仿真计算结果表明,改进SVR(support vector regression)的学习效果优于传统方法,并且随着迭代次数的增加,学习风险下降收敛,收敛速度依赖于传统方法的基本参数和改进方法的参数. 相似文献
7.
支持向量机(support vector machine(SVM))是一种数据挖掘中新型机器学习方法.提出了基于压缩凸包(compressed convex hull(CCH))的SVM分类问题的几何算法.对比简约凸包(reducedconvex hull(RCH)),CCH保持了数据的几何体形状,并且易于得到确定其极点的充要条件.作为CCH的实际应用,讨论了该几何算法的稀疏化方法及概率加速算法.数值试验结果表明所讨论的算法可降低核计算并取得较好的性能. 相似文献
8.
潘继斌 《数学的实践与认识》2006,36(2):182-185
研究了基于支持向量机的后验概率的应用,提出了对样本集进行分解,以产生局部后验概率,根据模式的稳健性对局部后验概率进行凸组合融合的方法. 相似文献
9.
以秩一支持张量机(Rank-one Support Tensor Machine,R1-STM)为代表的张量学习现已成为模式识别领域的一个研究热点,具有非常广泛的应用.秩一支持张量机是非凸优化问题,不但求解非常耗时,而且得到的解是局部最优解.基于张量核函数的支持张量机(Support Tensor Machine ba... 相似文献
10.
机器学习在人工智能领域取得了巨大的成就,在学界和业界都掀起了机器学习的热潮.针对股指期货交易速度快、交易频率高和交易量巨大且交易数据具有高纬、时序的特征,构建了新的股指期货量化投资模型,采用沪深300股指期货1分钟高频数据作为研究对象.并对比分析了神经网络、支持向量机和XGBoost对股指期货下1分钟价格的变动方向的预测能力.研究结果表明,三种机器学习方法都具有较好的预测能力,但XGBoost的预测能力要优于传统的神经网络和支持向量机. 相似文献
11.
12.
13.
14.
本文提出了一种计算共轭梯度法中主要参数βk的新形式,它的计算与目标函数的下降量有关.并且还构造了它的一种杂交形式.利用了βk的新形式及其杂交形式的共轭梯度法都是收敛的.大量的数值实验表明它们是非常有效和稳健的,能用于大规模科学计算. 相似文献
15.
基于有理函数模型的一维最优化方法 总被引:1,自引:0,他引:1
在本文中提出了基于有理函数模型的一维最优化方法。这些方法比二次模型方法有较好的数值性态和适应性。我们给出了有理反差商方法和Nevile型方法,并将其与二次插值方法进行了数值比较。 相似文献
16.
17.
18.
Rn中连续算子的逼近问题的数值方法,一直是计算科学中研究的热点。本文引进了新兴的智能机器一支持向量机,以解决Rn中连续算子的逼近问题。在给出支持向量机用于算子逼近问题的详细数学表示之后,我们提出了分块逼近的算法,并通过具体的实例说明支持向量机在算子逼近问题中的有效性与优越性。 相似文献
19.
大气中臭氧含量分析预测的支向量机模型 总被引:1,自引:0,他引:1
以俄亥俄州(O h io)的气象、臭氧监测数据为基础,对一个监测点数据进行了分析处理,运用支持向量机回归方法,对气象指标的多参数样本进行学习,获得精确的支持向量机映射关系,并对臭氧含量进行预测.预测结果的误差较小,符合实际情况,能够较好的解决实际问题,说明支持向量机回归在预测上具有小的结构风险与强的泛化能力. 相似文献