首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
分析了光纤时间传递中Sagnac效应产生的原因,详细推导了地球表面任意两点间Sagnac效应授时误差的计算公式,仿真研究了Sagnac效应对光纤时间传递精度的影响。结果表明,Sagnac效应授时误差取决于光纤的纬度及其轨迹,当进行长距离时间传递时其误差值可能达到纳秒量级,必须对Sagnac效应进行精确的时延补偿或校准。  相似文献   

2.
提出了一种基于光纤的时间和频率同时传递方案。采用基于温控光纤延迟线和压电陶瓷(PZT)光纤延迟线的光学相位噪声补偿技术实现高稳定的频率传递。同时,通过波分复用技术在稳定的光纤链路上进行基于时分复用的高精度同纤同波双向时间传递。在100 km的光纤链路上进行了时间和频率同时传递实验,光纤频率传递链路的秒稳定度和天稳定度分别达到5.25×10-14和1.9×10-17;双向时间比对在1 s处的时间传递秒稳定度优于40ps,在平均时间1000 s处优于1.5 ps。时间差抖动的峰-峰值和标准差分别小于400 ps和45 ps。  相似文献   

3.
陈法喜  赵侃  周旭  刘涛  张首刚 《物理学报》2017,66(20):200701-200701
为了保证长距离多站点间的高精度时间同步,在利用双向时间比对法实现高精度长距离时间同步的基础上,提出了一种利用一个波长信道同时对1 PPS(pluse per second)信号、时码信号以及10 MHz信号进行传递,并使用时分多址和净化再生的方式实现多站点高精度光纤时间同步的方法.以自行研制的工程样机在长度约550 km的实验室光纤链路以及871.6 km的实地光纤链路上进行了实验验证.在实验室光纤链路上,同时在50,300,550 km处测量得到的时间同步标准差分别为16.7,16.8,18.4 ps,时间稳定度分别为1.78 ps@1000 s,2.09 ps@1000 s,2.92 ps@1000 s.在实地光纤链路上,实现了光纤链路沿途11个站点的时间同步,测得871.6 km传递链路的时间同步标准差为29.8 ps,时间稳定度为3.85 ps@1000 s,不确定度为25.4 ps.  相似文献   

4.
在长距离光纤时间传递链路中,为了避免使用中继放大导致双向传输时延不对称以及引入附加的噪声,提出一种基于单光子探测的长距离光纤时间传递方案。将经过主端(从端) 1 pulse/s时间信号控制的激光脉冲序列作为发送信号,利用从端(主端)具有极高探测灵敏度的单光子探测器接收到达信号,并基于双向时分复用同纤同波时间比对方案得到双向光纤链路传输时延变化,进而根据时间相关单光子计数和高斯拟合的数据处理方式得到两端之间钟差的时间稳定度。为了实现单光子探测器在门控模式下对长距离光纤实验系统的长期测试,设计并实现了外部触发门控工作方式下动态调整的触发控制系统。通过利用光纤链路传输时延变化量,实现对门控触发信号的控制。350 km单模光纤和对应长度的色散补偿光纤(链路总损耗约为100 dB)的时间传递系统实验结果表明,时间传递稳定度优于1.5 ps@1 s和0.4 ps@8192 s。所提方法为长距离高精度光纤时间传递提供了一种有效的解决方案。  相似文献   

5.
光纤链路中高精度光学频率传递对光钟比对有重要意义,双向掺铒光纤放大器(EDFA)有助于在长距离光学频率传递中对信号进行损耗补偿和高精度传输。基于铒粒子受激放大的基本原理,设计了可用于光纤光学频率传递链路中的低噪声、高增益双向EDFA,并对其参数进行了仿真优化。实验结果表明,该双向EDFA的噪声指数为3.86dB,增益为20.14dB,引入的相位噪声在频率为1Hz处仅为0.1rad2/Hz。将该双向EDFA作为放大补偿器件应用于200km光纤光学频率传递链路中,获得了3.8×10-16/s的秒级频率稳定度及2.8×10-19/(104 s)的万秒级频率稳定度,在频率信号传递和光钟比对领域有着广阔的应用前景。  相似文献   

6.
基于光纤的光学频率传递研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘杰  高静  许冠军  焦东东  闫露露  董瑞芳  姜海峰  刘涛  张首刚 《物理学报》2015,64(12):120602-120602
随着光钟研究的发展, 光钟的稳定度和不确定度均达到10-18量级. 通过光纤可以实现光钟频率信号的高精度传输, 有望用于未来“秒”定义的复现. 演示了百公里级实验室光纤上的光学频率传递. 对于在实验室70 km光纤盘上实现的光频传递, 光纤相位噪声抑制在1-250 Hz傅里叶频率范围内均接近于光纤延时极限, 对应传输稳定度(Allan偏差)为秒级稳定度1.2×10-15, 10000 s稳定度为1.4×10-18. 实验室100 km光纤的光频传递秒级稳定度也达到了5×10-15. 提出了光纤噪声用户端补偿的方案, 可以简化星形传递网络中心站的复杂度. 在25 km光纤上演示了该传递方案, 实现的传输稳定度接近传统前置补偿传递方案.  相似文献   

7.
在长距离高精度光纤时间同步系统中,为了减少后向反射光与光纤色散对传输精度的影响,本文在双波长光纤时间同步传输方法之上,提出了一种具有色散误差修正功能的双波长光纤时间同步传输方法.以自行研制的工程样机在长度约为800 km的实验室光纤链路上和1085 km的实地光纤链路上进行了实验测试,也是国内首次实现千公里级实地光纤时间同步传输.在实验室光纤链路上,测得传输链路色散补偿后的色散时延误差为10 ps,时间同步标准差为5.7 ps,稳定度为1.12 ps@105 s,不确定度为18.4 ps.在实地光纤链路上,测得传输链路色散补偿后的色散时延误差为60 ps,时间同步标准差为18 ps,稳定度为5.4 ps@4×104 s,不确定度为63.5 ps.  相似文献   

8.
在高精度光纤频标传递过程中,需要对光纤链路引入的相位波动进行测量和补偿,其中引入的频率串扰是影响频标传递性能因素之一。为评估频率串扰对光纤频标传递性能影响,建立了频率串扰对频率传递稳定度的影响模型。在光纤链路温度变化条件下,通过仿真分析和实验研究了频率串扰与稳定度损失之间的关系。结果表明,频标的稳定度损失与串扰因子和频率有关。串扰因子越大,信号的阿伦方差曲线整体上移幅度越大,且串扰因子和稳定度损失峰值近似呈线性关系;频标频率变化时,频标传递的长期稳定度并非只受由温度缓慢变化引起的时延缓慢漂移的影响,也与频率点和时延波动量有关。频率升高时,频率稳定度损失的峰值点向短稳移动。  相似文献   

9.
全球导航卫星系统(Global Navigation Satellite System,GNSS)时间传递技术以其低成本、高精度、广覆盖范围等特点,广泛应用到高精度时频领域。传统卫星共视技术利用全球卫星导航时间比对标准(Common GNSS Generic Time Transfer Standard,CGGTTS)共视文件实现事后高精度时间传递,很难实现实时时间传递。为满足数字换流站、电力物联网、移动通信等对实时、高精度时间传递的需求,研究了基于北斗三号全球卫星导航定位系统(BDS-3)伪距观测数据的实时卫星共视技术,开展了短基线和西安-三亚长基线北斗实时卫星共视时间传递实验来评估实时共视时间传递性能。实验结果表明北斗实时卫星共视时间传递精度优于1 ns,可为时频系统、数字换流站等应用领域提供纳秒级时间同步和纳秒级时间溯源服务。  相似文献   

10.
研究了基于光纤环形网的多点高精度时频传递的方法,提出了终端站对钟差自感知的方案,将对钟差的感知测量以及补偿转移到终端站执行,实现网络中各个终端站与中心站的时频同步。搭建了长度为100 km的光纤环形网多点时频传递系统,实验研究了链路中色散带来的不对称性偏差的校消方法,验证了链路温度变化下的多点时频传递性能,测量的时频传递同步误差的峰峰值低于400 ps,均方根误差小于60 ps,表明终端站可以在光纤环形网的任意位置灵活接入。  相似文献   

11.
光纤陀螺随机误差建模与滤波方法研究   总被引:2,自引:0,他引:2  
提出了一种适用于高精度光纤陀螺的静态输出信号建模的时间序列模型,建立了光纤陀螺随机误差的卡尔曼滤波器。结果表明,该建模和滤波方法有效地减小了FOG的误差,明显地降低了陀螺的随机漂移,提高了导航精度,具有较好的实用价值。  相似文献   

12.
焦东东  高静  刘杰  邓雪  许冠军  陈玖朋  董瑞芳  刘涛  张首刚 《物理学报》2015,64(19):190601-190601
通信波段窄线宽激光器在基于光纤的光学频率传递中有着重要应用. 本文报道了1550 nm超窄线宽光纤激光器的研制及其在光学频率传递中的初步应用结果. 利用一台激光光源, 分别锁定到两个参考腔上(精细度分别为344000和296000), 锁定后经拍频比对测得单台激光线宽优于1.9 Hz, 秒级频率稳定度为1.7×10-14, 优于国内同类报道. 将研制的超窄线宽激光器用于光纤光学频率传递, 在50 km光纤盘上实现了 7.5×10-17/s的传递稳定度, 较采用商用光纤激光器提高了3.2倍.  相似文献   

13.
吴刚  李春来  朱磊  刘银年 《应用光学》2007,28(3):350-353
为了实现实验室环境下测定光速,采用已知长度及折射率的单模零色散光纤作为传输介质,利用高精度时间间隔测量技术测量了光在该光纤中的传输延时。经过理论推导,求出光速c与作为传输介质的光纤长度L、折射率n及光纤延时τ之间的关系式,从而通过测量得到L,n及τ的值即可计算得到真空中的光速值。与传统的利用天文法及精密仪器测量光速的方法相比,采用比较先进的高精度时间间隔测量技术可使时间分辨率达到125ps,从而在实验室环境下,利用简单仪器得到了高精度的测量结果。最终测量所得光速为299928077m/s,误差为30860m/s。  相似文献   

14.
脉冲激光在光纤中时间波形传输特性研究   总被引:2,自引:0,他引:2  
给出了光纤传输激光脉冲波形特性测试的实验光路图,对比测量了经过空气传输和光纤传输两种方式的脉冲波形。实验测试了光束耦合到不同长度的单模和多模光纤与经空气传输后的时间脉冲波形,得到了激光脉冲波形的精细结构。实验结果表明,所选的多模和单模光纤经数百米传输后的脉冲展宽在容许误差范围之内,说明所选用的光纤可以作为纳秒激光时间脉冲波形测试的理想传输介质。  相似文献   

15.
报道了利用50 km光纤实现4.38×10~(-15)@1 s和2.80×10~(-18)@65.5×10~3s稳定度的微波频率传递的实验研究.实验系统采用多普勒噪声消除技术,通过在本地端探测往返传递的微波信号相位获得链路上的相位变化信息,并实时控制光延迟调整机构进行补偿.光延迟控制采用压电陶瓷的快速拉伸和慢速光纤温控联合方式,可实现5 ns和千赫兹带宽的光延迟控制,能够实现光纤噪声的长期高精度补偿.与电相位补偿相比,光延迟补偿受微波泄露的影响相对较小,而微波泄露影响在类似系统难以避免,因此这种方式更利于获得高稳定度的频率传递.此外,系统采用变频往返传递消除光寄生反射效应,以及色散补偿光纤减小因色散引起的调制信号衰减等措施,提高了系统的技术指标.  相似文献   

16.
针对目前分布式无线地震数据采集中由于采集节点增多、无线传输延时等因素导致的各采集节点间数据采集同步精度不高的问题,研究并设计了一种针对分布式无线数据同步采集中各个节点同步授时以及对采集数据包进行精确时间标记的方案。采用GPS(Global Positioning System)授时技术对各个采集节点时钟进行授时,同时利用GPS精准的秒脉冲对本地压控晶振器频率误差进行实时修正。采用在地震采集数据包中加入精确的时间戳信息的方法,保证了各个节点间同步误差限制在0.1ms以内。即使在GPS失效的情况下,压控晶振器和计数器联合作用仍可保证各节点同步采集稳定工作6小时。  相似文献   

17.
蔡欣荣  司娜 《应用声学》2014,22(10):3290-32923308
介绍了全球定位系统GPS、短波授时技术;在对高稳恒温晶振及其频率特性进行分析的基础上,设计了一种基于GPS卫星、短波无线电授时的高精度时钟系统;系统通过利用GPS接收处理模块、短波授时接收模块得到的秒脉冲信号、时间信息,经过信号检测,时延修正处理、性能优选,脉冲数量统计、脉冲滤波与卡尔曼算法处理、PWM脉冲调压控制,实现对高稳恒温晶振频率的校准,获得一个短期及长期频率准确度都比较优良的时间频率标准,同时利用校频后恒温晶振分频出的1 pps信号对RTC时间芯片进行校准,对外输出高精度时间信息;对恒温晶振校频系统的基本工作原理及关键技术进行了详细说明,试验结果表明,在时间不长于1 h内,频率准确度优于0.9*10-9;该系统实用方便,达到了将恒温晶振校准到较高指标的目的。  相似文献   

18.
针对光纤链路高精度时频传输要求,基于时间信号与频率信号混合编码共传手段,实现了同纤同波的高精度双向时频传输,验证了 IRIG-B编解码模块输出的有效性和可靠性,达到了 1 ns的时间同步精度和17 ps的时延抖动.实验结果表明,该方案可在长距离光纤时频传输中对温度变化引起的时间延迟及其抖动进行有效补偿.  相似文献   

19.
利用西安和咸阳之间的电信省级骨干光纤网构建了210km的光学频率信号传递测试链路,链路损耗为0.23dB/km。实验中采用可搬运、基于光纤干涉仪、线宽约为200 Hz的激光器作为光源,利用两台低噪声双向掺铒光纤放大器(EDFA)补偿光纤链路损耗和增加光信号的传输距离,放大器平均增益控制在15dB左右,以防止激射。通过测量和分析不同情况下光纤链路的附加相位噪声,可观测到铁路震动引起的规律性干扰。当噪声抑制系统在锁定状态时,链路的相位噪声被抑制了23dB,在剔除铁路干扰时段数据后,获得的210km实地通信链路的秒级频率稳定度达到了1.51×10-14,万秒频率稳定度达到了5×10-17。利用210km通信链路进行了光学频率信号的远程传递测试,分析了限制频率稳定度的主要影响因素,并针对现行光纤布设方式提出了补充要求。该研究为基于通信链路的高精度光学频率信号的传递与比对提供理论支撑。  相似文献   

20.
文章介绍了时间频率同步的主要概念及方法。重点介绍了在清华大学与中国计量科学研究院之间往返80 km的商用光纤链路上进行时间频率传输与同步的方案,实验得到7×10-15/s,5×10-19/天的频率传输稳定度和50 fs的时间同步稳定度。针对不同网络结构,文章作者提出了多种光纤同步方案,并着重介绍了时间频率同步在科学研究领域中的一些重要应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号